PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Benedikt B Kaufer - Top 30 Publications

Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques.

Simian varicella virus (SVV), the primate counterpart of varicella zoster virus, causes varicella (chickenpox), establishes latency in ganglia and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing the enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and infected monkeys. Herein, we generated two additional recombinant SVVs to visualize infected cells in vitro and in vivo One harbors eGFP fused to the N-terminus of open reading frame (ORF) 9 (rSVV.eGFP-2a-ORF9) and another in which eGFP was fused to the C-terminus of ORF66 (rSVV.eGFP-ORF66). Both recombinant viruses efficiently expressed eGFP in cultured cells. Both recombinant SVV infections in culture were comparable to that of wild-type SVV (SVV.wt). Unlike the SVV.wt, eGFP-tagged SVV did not replicate in rhesus cells in culture. Intratracheal (IT) or IT plus intravenous (IV) inoculation of rhesus macaques with these new eGFP-tagged viruses resulted in low viremia without varicella rash, although SVV DNA was abundant in bronchoalveolar lavage (BAL) at 10 days post-infection (dpi). SVV DNA was also found in trigeminal ganglia of one monkey inoculated with rSVV.eGFP-ORF66. Intriguingly, a humoral response to both SVV and eGFP was observed. In addition, monkeys inoculated with the eGFP expressing viruses were protected from superinfection with SVV.wt, suggesting that the monkeys had mounted an efficient immune response. Together, our results show that eGFP expression could be responsible for their reduced pathogenesis.IMPORTANCE SVV infection in non-human primates has served as an extremely useful animal model to study VZV pathogenesis. eGFP-tagged viruses are a great tool to investigate their pathogenesis. We constructed and tested two new recombinant SVVs with eGFP inserted into two different locations in the SVV genome. Both recombinant SVVs showed robust replication in culture but reduced viremia compared to SVV.wt during primary infection in rhesus macaques. Our results indicate that conclusions on eGFP-tagged viruses based on in vitro results should be handled with care, since eGFP expression could result in attenuation of the virus.

Identification of the Receptor and Cellular Ortholog of the Marek's Disease Virus (MDV) CXC Chemokine.

Marek's disease virus (MDV) is a cell associated alphaherpesvirus that causes fatal lymphoma in chickens. One factor that plays a crucial role in MDV pathogenesis is the viral CXC chemokine vIL-8 that was originally named after chicken interleukin 8 (cIL-8). However, a recent study demonstrated that vIL-8 recruits B cells and a subset of T cells but not neutrophils, suggesting that vIL-8 is not a cIL-8 orthologue. In this study, we set to identify the cellular orthologues and receptor of vIL-8 using in silico analyses, binding and chemotaxis assays. Sequence and phylogenetic analyses of all chicken CXC chemokines present in the recently published chicken genome revealed that vIL-8 shares the highest amino acid similarity with the CXCL13L1 variant. To evaluate if vIL-8 and CXCL13L1 are also functional orthologues, we assessed their binding properties and chemotaxis activity. We demonstrated that both vIL-8 and CXCL13 variants bind B cells and subsets of T cells, confirming that they target the same cell types. In addition, the chemokines not only bound the target cells but also induced chemotaxis. Finally, we identified CXCR5 as the receptor of vIL-8 and CXCL13 variants and confirmed that the receptor is expressed on MDV target cells. Taken together, our data demonstrate the conservation of the receptor-ligand interaction between CXCR5 and CXCL13 and shed light on the origin and function of the MDV-encoded vIL-8 chemokine, which plays a crucial role in the pathogenesis of this highly oncogenic virus.

Epstein-Barr virus-encoded RNAs (EBERs) complement the loss of Herpesvirus telomerase RNA (vTR) in virus-induced tumor formation.

Marek's disease virus (MDV) is an alphaherpesvirus that causes fatal lymphomas in chickens and is used as a natural virus-host model for herpesvirus-induced tumorigenesis. MDV encodes a telomerase RNA subunit (vTR) that is crucial for efficient MDV-induced lymphoma formation; however, the mechanism is not completely understood. Similarly, Epstein Barr-virus (EBV) encodes two RNAs (EBER-1 and EBER-2) that are highly expressed in EBV-induced tumor cells, however their role in tumorigenesis remains unclear. Intriguingly, vTR and EBER-1 have interaction partners in common that are highly conserved in humans and chickens. Therefore, we investigated if EBER-1 and/or EBER-2 can complement the loss of vTR in MDV-induced tumor formation. We first deleted vTR (v∆vTR) and replaced it by either EBER-1 or EBER-2 in the very virulent RB-1B strain. Insertion of either EBER-1 or EBER-2 did not affect MDV replication and their expression levels were comparable to vTR in wild type virus. Intriguingly, EBER-2 restored tumor formation of MDV that lacks vTR. EBER-1 partially restored MDV oncogenicity, while tumor formation was severely impaired in chickens infected with v∆vTR. Our data provides the first evidence that EBERs possess tumor-promoting properties in vivo using this natural model for herpesvirus-tumorigenesis.

Association of Marek's Disease induced immunosuppression with activation of a novel regulatory T cells in chickens.

Marek's Disease Virus (MDV) is an alphaherpesvirus that infects chickens, transforms CD4+ T cells and causes deadly lymphomas. In addition, MDV induces immunosuppression early during infection by inducing cell death of the infected lymphocytes, and potentially due to activation of regulatory T (Treg)-cells. Furthermore, immunosuppression also occurs during the transformation phase of the disease; however, it is still unknown how the disease can suppress immune response prior or after lymphoma formation. Here, we demonstrated that chicken TGF-beta+ Treg cells are found in different lymphoid tissues, with the highest levels found in the gut-associated lymphoid tissue (cecal tonsil: CT), fostering an immune-privileged microenvironment exerted by TGF-beta. Surprisingly, significantly higher frequencies of TGF-beta+ Treg cells are found in the spleens of MDV-susceptible chicken lines compared to the resistant line, suggesting an association between TGF-beta+ Treg cells and host susceptibility to lymphoma formation. Experimental infection with a virulent MDV elevated the levels of TGF-beta+ Treg cells in the lungs as early as 4 days post infection, and during the transformation phase of the disease in the spleens. In contrast to TGF-beta+ Treg cells, the levels of CD4+CD25+ T cells remained unchanged during the infection and transformation phase of the disease. Furthermore, our results demonstrate that the induction of TGF-beta+ Treg cells is associated with pathogenesis of the disease, as the vaccine strain of MDV did not induce TGF-beta+ Treg cells. Similar to human haematopoietic malignant cells, MDV-induced lymphoma cells expressed high levels of TGF-beta but very low levels of TGF-beta receptor I and II genes. The results confirm that COX-2/ PGE2 pathway is involved in immunosuppression induced by MDV-lymphoma cells. Taken together, our results revealed a novel TGF-beta+ Treg subset in chickens that is activated during MDV infection and tumour formation.

Summary of the 10th International Conference on Human Herpesviruses-6 and -7 (HHV-6A, -6B, and HHV-7).

The 10th International Conference on Human herpesviruses-6 and -7 (HHV-6A, HHV-6B, and HHV-7) was held at the Freie Universität, Berlin, Germany from July 23-26, 2017. It attracted more than 130 basic, translational and clinical scientists from 19 countries. Important new information was presented regarding: the biology of HHV-6A and -6B; the biology and epidemiology of inherited chromosomally integrated HHV-6A and -6B; improved diagnostic tests; animal models for and animal viruses with similarities to HHV-6A, -6B, and -7; established and possible disease associations; and new treatment strategies. Here, we summarize work presented at the meeting that is of particular interest.

Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis.

Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle. Here, we addressed the role of DNA damage in MDV replication and pathogenesis. We demonstrated that MDV induces DSBs during lytic infection in vitro and in the peripheral blood mononuclear cells of infected animals. Intriguingly, we did not observe DNA damage in latently infected MDV-induced lymphoblastoid cells, while MDV reactivation resulted in the onset of DNA lesions, suggesting that DNA damage and/or the resulting DNA damage response might be required for efficient MDV replication and reactivation. In addition, reactivation was significantly enhanced by the induction of DNA damage using a number of chemicals. Finally, we used recombinant viruses to show that VP22 is required for the induction of DNA damage in vivo and that this likely contributes to viral oncogenesis.IMPORTANCE Marek's disease virus is an oncogenic alphaherpesvirus that causes fatal T-cell lymphomas in chickens. MDV causes substantial losses in the poultry industry and is also used in small-animal models for virus-induced tumor formation. DNA damage not only is implicated in tumor development but also aids in the life cycle of several viruses; however, its role in MDV replication, latency, and reactivation remains elusive. Here, we demonstrate that MDV induces DNA lesions during lytic replication in vitro and in vivo DNA damage was not observed in latently infected cells; however, it was reinitiated during reactivation. Reactivation was significantly enhanced by the induction of DNA damage. Recombinant viruses that lacked the ability to induce DNA damage were defective in their ability to induce tumors, suggesting that DNA damage might also contribute to cellular transformation processes leading to MDV lymphomagenesis.

Telomeres and Telomerase: Role in Marek's Disease Virus Pathogenesis, Integration and Tumorigenesis.

Telomeres protect the ends of vertebrate chromosomes from deterioration and consist of tandem nucleotide repeats (TTAGGG)n that are associated with a number of proteins. Shortening of the telomeres occurs during genome replication, thereby limiting the replication potential of somatic cells. To counteract this shortening, vertebrates encode the telomerase complex that maintains telomere length in certain cell types via de novo addition of telomeric repeats. Several herpesviruses, including the highly oncogenic alphaherpesvirus Marek's disease virus (MDV), harbor telomeric repeats (TMR) identical to the host telomere sequences at the ends of their linear genomes. These TMR facilitate the integration of the MDV genome into host telomeres during latency, allowing the virus to persist in the host for life. Integration into host telomeres is critical for disease and tumor induction by MDV, but also enables efficient reactivation of the integrated virus genome. In addition to the TMR, MDV also encodes a telomerase RNA subunit (vTR) that shares 88% sequence identity with the telomerase RNA in chicken (chTR). vTR is highly expressed during all stages of the virus lifecycle, enhances telomerase activity and plays an important role in MDV-induced tumor formation. This review will focus on the recent advances in understanding the role of viral TMR and vTR in MDV pathogenesis, integration and tumorigenesis.

Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration.

Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination in humans.

Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.

Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A.IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6A. This study is the first of its kind and suggests that telomerase activity is essential to restore a functional telomere of adequate length following HHV-6A integration.

Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39, U90, and U100, without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state.IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the present study, we describe two quantitative cell culture viral integration systems. These systems can be used to define cellular and viral factors that play a role in HHV-6A/B integration. Furthermore, these systems will allow us to decipher the conditions resulting in virus gene expression and excision of the integrated viral genome resulting in reactivation.

The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear lamina in response to herpesviral or inherent cellular stimuli. In essence, Pin1 represents a regulatory effector of lamina disassembly that promotes the nuclear pore-independent egress of herpesviral capsids.

Varicella zoster virus infection of human fetal lung cells alters mitochondrial morphology.

Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that establishes latency in ganglionic neurons throughout the neuraxis after primary infection. Here, we show that VZV infection induces a time-dependent significant change in mitochondrial morphology, an important indicator of cellular health, since mitochondria are involved in essential cellular functions. VZV immediate-early protein 63 (IE63) was detected in mitochondria-rich cellular fractions extracted from infected human fetal lung fibroblasts (HFL) by Western blotting. IE63 interacted with cytochrome c oxidase in bacterial 2-hybrid analyses. Confocal microscopy of VZV-infected HFL cells at multiple times after infection revealed the presence of IE63 in the nucleus, mitochondria, and cytoplasm. Our data provide the first evidence that VZV infection induces alterations in mitochondrial morphology, including fragmentation, which may be involved in cellular damage and/or death during virus infection.

The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration.

Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are ubiquitous betaherpesviruses that infects humans within the first years of life and establishes latency in various cell types. Both viruses can integrate their genomes into telomeres of host chromosomes in latently infected cells. The molecular mechanism of viral integration remains elusive. Intriguingly, HHV-6A, HHV-6B and several other herpesviruses harbor arrays of telomeric repeats (TMR) identical to human telomere sequences at the ends of their genomes. The HHV-6A and HHV-6B genomes harbor two TMR arrays, the perfect TMR (pTMR) and the imperfect TMR (impTMR). To determine if the TMR are involved in virus integration, we deleted both pTMR and impTMR in the HHV-6A genome. Upon reconstitution, the TMR mutant virus replicated comparable to wild type (wt) virus, indicating that the TMR are not essential for HHV-6A replication. To assess the integration properties of the recombinant viruses, we established an in vitro integration system that allows assessment of integration efficiency and genome maintenance in latently infected cells. Integration of HHV-6A was severely impaired in the absence of the TMR and the virus genome was lost rapidly, suggesting that integration is crucial for the maintenance of the virus genome. Individual deletion of the pTMR and impTMR revealed that the pTMR play the major role in HHV-6A integration, whereas the impTMR only make a minor contribution, allowing us to establish a model for HHV-6A integration. Taken together, our data shows that the HHV-6A TMR are dispensable for virus replication, but are crucial for integration and maintenance of the virus genome in latently infected cells.

The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration.

Human herpesvirus 6 (HHV-6) can integrate its genome into the telomeres of host chromosomes and is present in the germline of about 1 % of the human population. HHV-6 encodes a putative integrase U94 that possesses all molecular functions required for recombination including DNA-binding, ATPase, helicase and nuclease activity, and was hypothesized by many researchers to facilitate integration ever since the discovery of HHV-6 integration. However, analysis of U94 in the virus context has been hampered by the lack of reverse-genetic systems and efficient integration assays. Here, we addressed the role of U94 and the cellular recombinase Rad51 in HHV-6 integration. Surprisingly, we could demonstrate that HHV-6 efficiently integrated in the absence of U94 using a new quantitative integration assay. Additional inhibition of the cellular recombinase Rad51 had only a minor impact on virus integration. Our results shed light on this complex integration mechanism that includes factors beyond U94 and Rad51.

Generation of an Avian-Mammalian Rotavirus Reassortant by Using a Helper Virus-Dependent Reverse Genetics System.

The genetic diversity of rotavirus A (RVA) strains is facilitated in part by genetic reassortment. Although this process of genome segment exchange has been reported frequently among mammalian RVAs, it remained unknown if mammalian RVAs also could package genome segments from avian RVA strains. We generated a simian RVA strain SA11 reassortant containing the VP4 gene of chicken RVA strain 02V0002G3. To achieve this, we transfected BSR5/T7 cells with a T7 polymerase-driven VP4-encoding plasmid, infected the cells with a temperature-sensitive SA11 VP4 mutant, and selected the recombinant virus by increasing the temperature. The reassortant virus could be stably passaged and exhibited cytopathic effects in MA-104 cells, but it replicated less efficiently than both parental viruses. Our results show that avian and mammalian rotaviruses can exchange genome segments, resulting in replication-competent reassortants with new genomic and antigenic features.

In vitro model for lytic replication, latency, and transformation of an oncogenic alphaherpesvirus.

Marek's disease virus (MDV) is an alphaherpesvirus that causes deadly T-cell lymphomas in chickens and serves as a natural small animal model for virus-induced tumor formation. In vivo, MDV lytically replicates in B cells that transfer the virus to T cells in which the virus establishes latency. MDV also malignantly transforms CD4+ T cells with a T(reg) signature, ultimately resulting in deadly lymphomas. No in vitro infection system for primary target cells of MDV has been available due to the short-lived nature of these cells in culture. Recently, we characterized cytokines and monoclonal antibodies that promote survival of cultured chicken B and T cells. We used these survival stimuli to establish a culture system that allows efficient infection of B and T cells with MDV. We were able to productively infect with MDV B cells isolated from spleen, bursa or blood cultured in the presence of soluble CD40L. Virus was readily transferred from infected B to T cells stimulated with an anti-TCRαVβ1 antibody, thus recapitulating the in vivo situation in the culture dish. Infected T cells could then be maintained in culture for at least 90 d in the absence of TCR stimulation, which allowed the establishment of MDV-transformed lymphoblastoid cell lines (LCL). The immortalized cells had a signature comparable to MDV-transformed CD4+ α/β T cells present in tumors. In summary, we have developed a novel in vitro system that precisely reflects the life cycle of an oncogenic herpesivrus in vivo and will allow us to investigate the interaction between virus and target cells in an easily accessible system.

Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins.

Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3' to 5' exonuclease activity on dsDNA with a preference for 3'-recessed ends. Once the DNA strand reaches 8-10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3' end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration.

3D tissue-like assemblies: A novel approach to investigate virus-cell interactions.

Virus-host cell interactions are most commonly analyzed in cells maintained in vitro as two-dimensional tissue cultures. However, these in vitro conditions vary quite drastically from the tissues that are commonly infected in vivo. Over the years, a number of systems have been developed that allow the establishment of three-dimensional (3D) tissue structures that have properties similar to their in vivo 3D counterparts. These 3D systems have numerous applications including drug testing, maintenance of large tissue explants, monitoring migration of human lymphocytes in tissues, analysis of human organ tissue development and investigation of virus-host interactions including viral latency. Here, we describe the establishment of tissue-like assemblies for human lung and neuronal tissue that we infected with a variety of viruses including the respiratory pathogens human parainfluenza virus type 3 (PIV3), respiratory syncytial virus (RSV) and SARS corona virus (SARS-CoV) as well as the human neurotropic herpesvirus, varicella-zoster virus (VZV).

Chromosomally integrated HHV-6: impact on virus, cell and organismal biology.

HHV-6 integrates its genome into telomeres of human chromosomes. Integration can occur in somatic cells or gametes, the latter leading to individuals harboring the HHV-6 genome in every cell. This condition is transmitted to descendants and referred to as inherited chromosomally integrated human herpesvirus 6 (iciHHV-6). Although integration can occur in different chromosomes, it invariably takes place in the telomere region. This integration mechanism represents a way to maintain the virus genome during latency, which is so far unique amongst human herpesviruses. Recent work provides evidence that the integrated HHV-6 genome can be mobilized from the host chromosome, resulting in the onset of disease. Details on required structural determinants, putative integration mechanisms and biological and medical consequences of iciHHV-6 are discussed.

Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment.

Human herpesvirus 6 (HHV-6) A and B are two betaherpesviruses that are associated with many conditions including roseola, drug-induced hypersensitivity syndrome, limbic encephalitis, and myocarditis. HHV-6 is integrated in the germline [chromosomically integrated HHV-6 (ciHHV-6)] in ∼0.8% of the human population. To date, the prevalence, species distribution, and treatment responses of ciHHV-6 are unknown for cardiac patients.

Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes.

It is well known that numerous viruses integrate their genetic material into host cell chromosomes. Human herpesvirus 6 (HHV-6) and oncogenic Marek's disease virus (MDV) have been shown to integrate their genomes into host telomeres of latently infected cells. This is unusual for herpesviruses as most maintain their genomes as circular episomes during the quiescent stage of infection. The genomic DNA of HHV-6, MDV, and several other herpesviruses harbors telomeric repeats (TMRs) that are identical to host telomere sequences (TTAGGG). At least in the case of MDV, viral TMRs facilitate integration into host telomeres. Integration of HHV-6 occurs not only in lymphocytes but also in the germline of some individuals, allowing vertical virus transmission. Although the molecular mechanism of telomere integration is poorly understood, the presence of TMRs in a number of herpesviruses suggests it is their default program for genome maintenance during latency and also allows efficient reactivation.

Role of the short telomeric repeat region in Marek's disease virus replication, genomic integration, and lymphomagenesis.

Marek's disease virus (MDV) is a cell-associated alphaherpesvirus that causes generalized polyneuritis and T-cell lymphomas in chickens. MDV is able to integrate its genome into host telomeres, but the mechanism of integration is poorly understood. The MDV genome harbors two arrays of telomeric repeats (TMR) at the ends of its linear genome: multiple telomeric repeats (mTMR), with a variable number of up to 100 repeats, and short telomeric repeats (sTMR), with a fixed number of 6 repeats. The mTMR have recently been shown to play an important role in MDV integration and tumor formation; however, the functions of the sTMR have remained unknown. In this study, we demonstrate that deletion of the sTMR in the MDV genome abrogates virus replication, while extensive mutation of the sTMR does not, indicating that the presence of the sTMR but not the sTMR sequence itself is important. Furthermore, we generated a panel of truncation mutants to determine the minimal length of the sTMR and observed a direct correlation between sTMR length and MDV replication. To address the role of sTMR in MDV replication, integration, and tumorigenesis, sTMR sequences were replaced by a scrambled repeated sequence (vsTMR_mut). vsTMR_mut replicated comparably to parental and revertant viruses in vitro. In vivo, however, a significant reduction in disease and tumor incidence was observed in chickens infected with vsTMR_mut that also correlated with a reduced number of viral integration sites in tumor cells. Taken together, our data demonstrate that the sTMR play a central role in MDV genome replication, pathogenesis, and MDV-induced tumor formation.

Detection of integrated herpesvirus genomes by fluorescence in situ hybridization (FISH).

Fluorescence in situ hybridization (FISH) is widely used to visualize nucleotide sequences in interphase cells or on metaphase chromosomes using specific probes that are complementary to the respective targets. Besides its broad application in cytogenetics and cancer research, FISH facilitates the localization of virus genomes in infected cells. Some herpesviruses, including human herpesvirus 6 (HHV-6) and Marek's disease virus (MDV), have been shown to integrate their genetic material into host chromosomes, which allows transmission of HHV-6 via the germ line and is required for efficient MDV-induced tumor formation. We describe here the detection by FISH of integrated herpesvirus genomes in metaphase chromosomes and interphase nuclei of herpesvirus-infected cells.

Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection.

Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication.

Marek's disease virus (MDV) encodes an ubiquitin-specific protease (USP) within its UL36 gene. USP is highly conserved among herpesviruses and was shown to be important for MDV replication and pathogenesis in MDV's natural host, the chicken. To further investigate the role of MDV USP, several recombinant (r) MDVs were generated and their in vitro phenotypes were evaluated using plaque size and growth kinetics assays. We discovered that the N-terminus of pUL36 is essential for MDV replication and could not be complemented by ectopic expression of MDV USP. In addition, we demonstrated that the region located between the conserved glutamine (Q85) and leucine (L106) residues comprising the active site cysteine (C98) is also essential for MDV replication. Based on the analyses of the rMDVs generated here, we concluded that MDV USP likely contributes to the structure and/or stability of pUL36 and affects replication and oncogenesis of MDV beyond its enzymatic activity.

Marek's disease viral interleukin-8 promotes lymphoma formation through targeted recruitment of B cells and CD4+ CD25+ T cells.

Marek's disease virus (MDV) is a cell-associated and highly oncogenic alphaherpesvirus that infects chickens. During lytic and latent MDV infection, a CXC chemokine termed viral interleukin-8 (vIL-8) is expressed. Deletion of the entire vIL-8 open reading frame (ORF) was shown to severely impair disease progression and tumor development; however, it was unclear whether this phenotype was due to loss of secreted vIL-8 or of splice variants that fuse exons II and III of vIL-8 to certain upstream open reading frames, including the viral oncoprotein Meq. To specifically examine the role of secreted vIL-8 in MDV pathogenesis, we constructed a recombinant virus, vΔMetvIL-8, in which we deleted the native start codon from the signal peptide encoding exon I. This mutant lacked secreted vIL-8 but did not affect Meq-vIL-8 splice variants. Loss of secreted vIL-8 resulted in highly reduced disease and tumor incidence in animals infected with vΔMetvIL-8 by the intra-abdominal route. Although vΔMetvIL-8 was still able to spread to naïve animals by the natural route, infection and lymphomagenesis in contact animals were severely impaired. In vitro assays showed that purified recombinant vIL-8 efficiently binds to and induces chemotaxis of B cells, which are the main target for lytic MDV replication, and also interacts with CD4(+) CD25(+) T cells, known targets of MDV transformation. Our data provide evidence that vIL-8 attracts B and CD4(+) CD25(+) T cells to recruit targets for both lytic and latent infection.

Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of mini-F sequences.

Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.

Fluorescently tagged pUL47 of Marek's disease virus reveals differential tissue expression of the tegument protein in vivo.

Marek's disease virus (MDV), a lymphotropic alphaherpesvirus, causes Marek's disease (MD) in chickens. MD is characterized by neurological signs, chronic wasting, and T cell lymphomas that predominate in the visceral organs. MDV replicates in a highly cell-associated manner in vitro and in vivo, with infectious virus particles being released only from feather follicle epithelial (FFE) cells in the skin. Virus produced and shed from FFE cells allows transmission of MDV from infected to naïve chickens, but the mechanisms or roles of differential virus gene expression have remained elusive. Here, we generated recombinant MDV in which we fused enhanced green fluorescent protein (EGFP) to the C terminus of the tegument protein pUL47 (vUL47-EGFP) or pUL49 (vUL49-EGFP). While vUL49-EGFP was highly attenuated in vitro and in vivo, vUL47-EGFP showed unaltered pathogenic potential and stable production of pUL47-EGFP, which facilitated direct analysis of pUL47 expression in cells and tissues. Our studies revealed that pUL47-EGFP is expressed at low levels and localizes to the nucleus during lytic replication in vitro and in lymphocytes in the spleen in vivo, while it is undetectable in tumors. In contrast, pUL47-EGFP is highly abundant and localizes predominantly in the cytoplasm in FFE cells in the skin, where MDV is shed into the environment. We concluded that differential expression and localization of MDV pUL47-EGFP tegument protein is potentially important for the unique cell-associated nature of MDV in vitro and in lymphocytes in vivo, as well as production of free virus in FFE cells.

Herpesvirus telomerase RNA (vTR) with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma.

Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation.

Some herpesviruses, particularly lymphotropic viruses such as Marek's disease virus (MDV) and human herpesvirus 6 (HHV-6), integrate their DNA into host chromosomes. MDV and HHV-6, among other herpesviruses, harbor telomeric repeats (TMRs) identical to host telomeres at either end of their linear genomes. Using MDV as a natural virus-host model, we show that herpesvirus TMRs facilitate viral genome integration into host telomeres and that integration is important for establishment of latency and lymphoma formation. Integration into host telomeres also aids in reactivation from the quiescent state of infection. Our results and the presence of TMRs in many herpesviruses suggest that integration mediated by viral TMRs is a conserved mechanism, which ensures faithful virus genome maintenance in host cells during cell division and allows efficient mobilization of dormant viral genomes. This finding is of particular importance as reactivation is critical for virus spread between susceptible individuals and is necessary for continued herpesvirus evolution and survival.