A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Luciana Stănică - Top 30 Publications

N-glycosylation of the transient receptor potential melastatin 8 channel is altered in pancreatic cancer cells.

Transient receptor potential melastatin 8 (TRPM8), a membrane ion channel, is activated by thermal and chemical stimuli. In pancreatic ductal adenocarcinoma, TRPM8 is required for cell migration, proliferation, and senescence and is associated with tumor size and pancreatic ductal adenocarcinoma stages. Although the underlying mechanisms of these processes have yet to be described, this cation-permeable channel has been proposed as an oncological target. In this study, the glycosylation status of the TRPM8 channel was shown to affect cell proliferation, cell migration, and calcium uptake. TRPM8 expressed in the membrane of the Panc-1 pancreatic tumoral cell line is non-glycosylated, whereas human embryonic kidney cells transfected with human TRPM8 overexpress a glycosylated protein. Moreover, our data suggest that Ca(2+) uptake is modulated by the glycosylation status of the protein, thus affecting cell proliferation.

Quantitative assessment of specific carbonic anhydrase inhibitors effect on hypoxic cells using electrical impedance assays.

Carbonic anhydrase IX (CA IX) is an important orchestrator of hypoxic tumour environment, associated with tumour progression, high incidence of metastasis and poor response to therapy. Due to its tumour specificity and involvement in associated pathological processes: tumourigenesis, angiogenesis, inhibiting CA IX enzymatic activity has become a valid therapeutic option. Dynamic cell-based biosensing platforms can complement cell-free and end-point analyses and supports the process of design and selection of potent and selective inhibitors. In this context, we assess the effectiveness of recently emerged CA IX inhibitors (sulphonamides and sulphocoumarins) and their antitumour potential using an electrical impedance spectroscopy biosensing platform. The analysis allows discriminating between the inhibitory capacities of the compounds and their inhibition mechanisms. Microscopy and biochemical assays complemented the analysis and validated impedance findings establishing a powerful biosensing tool for the evaluation of carbonic anhydrase inhibitors potency, effective for the screening and design of anticancer pharmacological agents.

Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment.

To understand biological processes at the cellular level, a general approach is to alter the cells' environment and to study their chemical responses. Herein, we present the implementation of an electrochemical push-pull probe, which combines a microfluidic system with a microelectrode, as a tool for locally altering the microenvironment of few adherent living cells by working in two different perturbation modes, namely electrochemical (i.e., electrochemical generation of a chemical effector compound) and microfluidic (i.e., infusion of a chemical effector compound from the pushing microchannel, while simultaneously aspirating it through the pulling channel, thereby focusing the flow between the channels). The effect of several parameters such as flow rate, working distance, and probe inclination angle on the affected area of adherently growing cells was investigated both theoretically and experimentally. As a proof of concept, localized fluorescent labeling and pH changes were purposely introduced to validate the probe as a tool for studying adherent cancer cells through the control over the chemical composition of the extracellular space with high spatiotemporal resolution. A very good agreement between experimental and simulated results showed that the electrochemical perturbation mode enables to affect precisely only a few living cells localized in a high-density cell culture.

Characterization of functional transient receptor potential melastatin 8 channels in human pancreatic ductal adenocarcinoma cells.

Recently, the transient receptor potential melastatin 8 (TRPM8) channel has emerged as a putative biomarker for pancreatic ductal adenocarcinoma (PDA). This study aimed to evaluate the expression of TRPM8 and its modulation by specific agonists and antagonists in PDA cells.