PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Matthew C Walker - Top 30 Publications

Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders.

High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders.

Commonalities in epileptogenic processes from different acute brain insults: Do they translate?

The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.

Human hippocampal theta power indicates movement onset and distance travelled.

Theta frequency oscillations in the 6- to 10-Hz range dominate the rodent hippocampal local field potential during translational movement, suggesting that theta encodes self-motion. Increases in theta power have also been identified in the human hippocampus during both real and virtual movement but appear as transient bursts in distinct high- and low-frequency bands, and it is not yet clear how these bursts relate to the sustained oscillation observed in rodents. Here, we examine depth electrode recordings from the temporal lobe of 13 presurgical epilepsy patients performing a self-paced spatial memory task in a virtual environment. In contrast to previous studies, we focus on movement-onset periods that incorporate both initial acceleration and an immediately preceding stationary interval associated with prominent theta oscillations in the rodent hippocampal formation. We demonstrate that movement-onset periods are associated with a significant increase in both low (2-5 Hz)- and high (6-9 Hz)-frequency theta power in the human hippocampus. Similar increases in low- and high-frequency theta power are seen across lateral temporal lobe recording sites and persist throughout the remainder of movement in both regions. In addition, we show that movement-related theta power is greater both before and during longer paths, directly implicating human hippocampal theta in the encoding of translational movement. These findings strengthen the connection between studies of theta-band activity in rodents and humans and offer additional insight into the neural mechanisms of spatial navigation.

Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery.

Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy.

Personalized translational epilepsy research - Novel approaches and future perspectives: Part I: Clinical and network analysis approaches.

Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1].

Personalized translational epilepsy research - Novel approaches and future perspectives: Part II: Experimental and translational approaches.

Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics, and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. This Part II includes the experimental and translational approaches and a discussion of the future perspectives, while the diagnostic methods, EEG network analysis, biomarkers, and personalized treatment approaches were addressed in Part I [1].

Current practice and recommendations in UK epilepsy monitoring units. Report of a national survey and workshop.

Inpatient video-EEG monitoring (VEM) is an important investigation in patients with seizures or blackouts, and in the pre-surgical workup of patients with epilepsy. There has been an expansion in the number of Epilepsy Monitoring Units (EMU) in the UK offering VEM with a necessary increase in attention on quality and safety. Previous surveys have shown variation across centres on issues including consent and patient monitoring.

Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy.

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.

Editorial.

The long-term course of temporal lobe epilepsy: From unilateral to bilateral interictal epileptiform discharges in repeated video-EEG monitorings.

Bilateral interictal epileptiform discharges (IED) and ictal patterns are common in temporal lobe epilepsy (TLE) and have been associated with decreased chances of seizure freedom after epilepsy surgery. It is unclear whether secondary epileptogenesis, although demonstrated in experimental models, exists in humans and may account for progression of epilepsy.

Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline.

Carvacrol is a naturally occurring monoterpenic phenol that has been suggested to have an action at transient receptor potential cation subfamily M7 (TRPM7) channels, γ-aminobutyric acid (GABAA receptors, and sodium channels, and has been shown to be antiinflammatory. Carvacrol is neuroprotective in models of cerebral ischemia in vivo and in vitro, probably through its action at TRPM7 channels. We therefore aimed to determine the effect of carvacrol on status epilepticus (SE), chronic epilepsy, cell death, and post-SE cognitive decline.

Pathophysiology of status epilepticus.

Status epilepticus (SE) is the maximal expression of epilepsy with a high morbidity and mortality. It occurs due to the failure of mechanisms that terminate seizures. Both human and animal data indicate that the longer a seizure lasts, the less likely it is to stop. Recent evidence suggests that there is a critical transition from an ictal to a post-ictal state, associated with a transition from a spatio-temporally desynchronized state to a highly synchronized state, respectively. As SE continues, it becomes progressively resistant to drugs, in particular benzodiazepines due partly to NMDA receptor-dependent internalization of GABA(A) receptors. Moreover, excessive calcium entry into neurons through excessive NMDA receptor activation results in activation of nitric oxide synthase, calpains, and NADPH oxidase. The latter enzyme plays a critical part in the generation of seizure-dependent reactive oxygen species. Calcium also accumulates in mitochondria resulting in mitochondrial failure (decreased ATP production), and opening of the mitochondrial permeability transition pore. Together these changes result in status epilepticus-dependent neuronal death via several pathways. Multiple downstream mechanisms including inflammation, break down of the blood-brain barrier, and changes in gene expression can contribute to later pathological processes including chronic epilepsy and cognitive decline.

Astrocytic GABA transporter activity modulates excitatory neurotransmission.

Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus.

In response: Comment on falling status epilepticus mortality rates in England and Wales: 2001-2013.

Falling status epilepticus mortality rates in England and Wales: 2001-2013?

Status epilepticus (SE) is associated with significant mortality and accounts for ~10% of epilepsy-related deaths. Epilepsy and SE mortality data from 2001 to 2013, in addition to annual age group populations for England and Wales, were obtained from the Office of National Statistics website (www.ons.gov.uk). Age-adjusted mortality rates for epilepsy and SE with 95% confidence intervals (CIs) were calculated using the European Standard Population. Trends in mortality rates for both epilepsy and SE were investigated using the Spearman coefficient. The crude mean epilepsy mortality rate per 100,000 person-years between 2001 and 2013 was 1.87 (95% CI 1.83-1.91), with a corresponding SE mortality rate of 0.14 (95% CI 0.13-0.15). The mean age-adjusted epilepsy mortality rate per 100,000 person years was 3.24 (95% CI 3.12-3.35), with a corresponding SE mortality rate of 0.24 (95% CI 0.21-0.27). All epilepsy deaths significantly decreased from 2001 to 2013 (Spearman's ρ -0.733, p = 0.004); this decrease was predominantly due to a decrease in SE deaths (Spearman's ρ -0.917, p < 0.001). In summary, our finding supports the hypothesis that the policy of early and aggressive treatment of SE may be improving the prognosis of this condition in England and Wales.

Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.

Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.

Seizure control by decanoic acid through direct AMPA receptor inhibition.

The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet.

New experimental therapies for status epilepticus in preclinical development.

Starting with the established antiepileptic drug, valproic acid, we have taken a novel approach to develop new antiseizure drugs that may be effective in status epilepticus. We first identified that valproic acid has a potent effect on a biochemical pathway, the phosphoinositide pathway, in Dictyostelium discoideum, and we demonstrated that this may relate to its mechanism of action against seizures in mammalian systems. Through screening in this pathway, we have identified a large array of fatty acids and fatty acid derivatives with antiseizure potential. These were then evaluated in an in vitro mammalian system. One compound that we identified through this process is a major constituent of the ketogenic diet, strongly arguing that it may be the fatty acids that are mediating the antiseizure effect of this diet. We further tested two of the more potent compounds in an in vivo model of status epilepticus and demonstrated that they were more effective than valproic acid in treating the status epilepticus. This article is part of a Special Issue entitled "Status Epilepticus".

Seizure localization using ictal phase-locked high gamma: A retrospective surgical outcome study.

To determine whether resection of areas with evidence of intense, synchronized neural firing during seizures is an accurate indicator of postoperative outcome.

Predictors for being offered epilepsy surgery: 5-year experience of a tertiary referral centre.

To define factors that predict whether patients with pharmacoresistant focal epilepsy are offered epilepsy surgery (including invasive EEG) and the main reasons for not proceeding with these after non-invasive presurgical evaluation.

Seize the moment that is thine: how should we define seizures?

Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity.

GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg(2+) model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity.

Gelastic seizures: incidence, clinical and EEG features in adult patients undergoing video-EEG telemetry.

This study aimed to determine clinical features of adult patients with gelastic seizures recorded on video -electroencephalography (EEG) over a 5-year period. We screened video-EEG telemetry reports for the occurrence of the term "gelastic" seizures, and assessed the semiology, EEG features, and duration of those seizures. Gelastic seizures were identified in 19 (0.8%) of 2,446 admissions. The presumed epileptogenic zone was in the hypothalamus in one third of the cases, temporal lobe epilepsy was diagnosed in another third, and the remainder of the cases presenting with gelastic seizures were classified as frontal, parietal lobe epilepsy or remained undetermined or were multifocal. Gelastic seizures were embedded in a semiology, with part of the seizure showing features of automotor seizures. A small proportion of patients underwent epilepsy surgery. Outcome of epilepsy surgery was related to the underlying pathology; two patients with hippocampal sclerosis had good outcomes following temporal lobe resection and one of four patients with hypothalamic hamartomas undergoing gamma knife surgery had a good outcome.

Epilepsy research methods update: Understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms.

This narrative review is intended to introduce clinicians treating epilepsy and researchers familiar with mammalian models of epilepsy to experimentally tractable, non-mammalian research models used in epilepsy research, ranging from unicellular eukaryotes to more complex multicellular organisms. The review focuses on four model organisms: the social amoeba Dictyostelium discoideum, the roundworm Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio. We consider recent discoveries made with each model organism and discuss the importance of these advances for the understanding and treatment of epilepsy in humans. The relative ease with which mutations in genes of interest can be produced and studied quickly and cheaply in these organisms, together with their anatomical and physiological simplicity in comparison to mammalian species, are major advantages when researchers are trying to unravel complex disease mechanisms. The short generation times of most of these model organisms also mean that they lend themselves particularly conveniently to the investigation of drug effects or epileptogenic processes across the lifecourse.

Neural ECM and epilepsy.

Currently, there are about 20 antiepileptic drugs on market. Still, seizures in about 30% of patients with epilepsy are not adequately controlled, or the drugs cause quality-of-life-compromising adverse events. Importantly, there are no treatments to combat epileptogenesis, a process that leads to the development of epilepsy and its progression. To fill the gaps in the treatment of epilepsy, there is an urgent need for identification of novel treatment targets. Data emerging over the recent years have shown that different components of the extracellular matrix (ECM) contribute to many components of tissue reorganization during epileptogenesis and the ECM is also a major regulator of synaptic excitability. Here, we review the role of urokinase-type plasminogen activator receptor interactome, matrix metalloproteinases, tenascin-R, and LGI1 in epileptogenesis and ictogenesis. Moreover, the role of the ECM in epilepsy-related comorbidities is reviewed. As there is active development of new imaging methods, we also summarize the data available on imaging of the ECM in epilepsy.

The utility of polysomnography for the diagnosis of NREM parasomnias: an observational study over 4 years of clinical practice.

Polysomnography (PSG) is considered the gold standard for diagnosis of non-rapid eye movement (NREM) parasomnias, however its diagnostic yield has been rarely reported. We aimed to assess the diagnostic value of polysomnography in different categories of patients with suspected NREM parasomnia and define variables that can affect the outcome. 124 adults referred for polysomnography for suspected NREM parasomnia were retrospectively identified and divided into clinical categories based on their history. Each polysomnography was analysed for features of NREM parasomnia or different sleep disorders and for presence of potential precipitants. The impact on the outcome of number of recording nights and concomitant consumption of benzodiazepines and antidepressants was assessed. Overall, PSG confirmed NREM parasomnias in 60.5 % patients and showed a different sleep disorder in another 16 %. Precipitants were found in 21 % of the 124 patients. However, PSG showed limited value when the NREM parasomnia was clinically uncomplicated, since it rarely revealed a different diagnosis or unsuspected precipitants (5 % respectively), but became essential for people with unusual features in the history where different or overlapping diagnoses (18 %) or unsuspected precipitants (24 %) were commonly identified. Taking benzodiazepines or antidepressants during the PSG reduced the diagnostic yield. PSG has a high diagnostic yield in patients with suspected NREM parasomnia, and can reveal a different diagnosis or precipitants in over 40 % of people with complicated or atypical presentation or those with a history of epilepsy. We suggest that PSG should be performed for one night in the first instance, with leg electrodes and respiratory measurements and after benzodiazepine and antidepressant withdrawal.

Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency.

The medium chain triglyceride (MCT) ketogenic diet is a major treatment of drug-resistant epilepsy but is problematic, particularly in adults, because of poor tolerability. Branched derivatives of octanoic acid (OA), a medium chain fat provided in the diet have been suggested as potential new treatments for drug-resistant epilepsy, but the structural basis of this functionality has not been determined. Here we investigate structural variants of branched medium chain fatty acids as new seizure-control treatments. We initially employ a series of methyl-branched OA derivatives, and using the GABAA receptor antagonist pentylenetetrazol to induce seizure-like activity in rat hippocampal slices, we show a strong, branch-point-specific activity that improves upon the related epilepsy treatment valproic acid. Using low magnesium conditions to induce glutamate excitotoxicity in rat primary hippocampal neuronal cultures for the assessment of neuroprotection, we also show a structural dependence identical to that for seizure control, suggesting a related mechanism of action for these compounds in both seizure control and neuroprotection. In contrast, the effect of these compounds on histone deacetylase (HDAC) inhibition, associated with teratogenicity, shows no correlation with therapeutic efficacy. Furthermore, small structural modifications of the starting compounds provide active compounds without HDAC inhibitory effects. Finally, using multiple in vivo seizure models, we identify potent lead candidates for the treatment of epilepsy. This study therefore identifies a novel family of fatty acids, related to the MCT ketogenic diet, that show promise as new treatments for epilepsy control and possibly other MCT ketogenic diet-responding conditions, such as Alzheimer disease.

Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity.

Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilising the low Mg(2+) model in hippocampal rat neurons. Live-cell imaging of super ecliptic pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg(2+) conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-d-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca(2+) signal during low Mg(2+) using the Ca(2+)-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca(2+) changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca(2+) concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE.

What non-neuronal mechanisms should be studied to understand epileptic seizures?

While seizures ultimately result from aberrant firing of neuronal networks, several laboratories have embraced a non-neurocentric view of epilepsy to show that other cells in the brain also bear an etiologic impact in epilepsy. Astrocytes and brain endothelial cells are examples of controllers of neuronal homeostasis; failure of proper function of either cell type has been shown to have profound consequences on neurophysiology. Recently, an even more holistic view of the cellular and molecular mechanisms of epilepsy has emerged to include white blood cells, immunological synapses, the extracellular matrix and the neurovascular unit. This review will briefly summarize these findings and propose mechanisms and targets for future research efforts on non-neuronal features of neurological disorders including epilepsy.

Chemical-genetic attenuation of focal neocortical seizures.

Focal epilepsy is commonly pharmacoresistant, and resective surgery is often contraindicated by proximity to eloquent cortex. Many patients have no effective treatment options. Gene therapy allows cell-type specific inhibition of neuronal excitability, but on-demand seizure suppression has only been achieved with optogenetics, which requires invasive light delivery. Here we test a combined chemical-genetic approach to achieve localized suppression of neuronal excitability in a seizure focus, using viral expression of the modified muscarinic receptor hM4Di. hM4Di has no effect in the absence of its selective, normally inactive and orally bioavailable agonist clozapine-N-oxide (CNO). Systemic administration of CNO suppresses focal seizures evoked by two different chemoconvulsants, pilocarpine and picrotoxin. CNO also has a robust anti-seizure effect in a chronic model of focal neocortical epilepsy. Chemical-genetic seizure attenuation holds promise as a novel approach to treat intractable focal epilepsy while minimizing disruption of normal circuit function in untransduced brain regions or in the absence of the specific ligand.