A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Meng Yao - Top 30 Publications

Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of β-Sheet Domains.

Usually, regenerated silk fibroin (RSF) hydrogels cross-linked by chemical agents such as horseradish peroxide (HRP)/H2O2 perform elastic properties, while display unsatisfactory strength for practical applications especially as load-bearing materials, and inadequate stability when incubated in a simulated in vivo environment. Here, the RSF hydrogel with both excellent strength and elasticity was prepared by inducing the conformation transition from random coil to β-sheet in a restricted RSF network precross-linked by HRP/H2O2. Such "dual-networked" hydrogels, regarding the one with 10 wt % RSF (Mw: 220 kDa) as a representative, show around 100% elongation, as well as the compressive modulus and tensile modulus up to 3.0 and 2.5 MPa respectively, which are much higher than those of physically cross-linked natural polymer hydrogels (commonly within 0.01-0.1 MPa at the similar solid content). It has been shown that the enhanced comprehensive mechanical properties of RSF hydrogels derive from the formation of small-sized and uniformly distributed β-sheet domains in the hydrogel during the conformation transition of RSF whose size is limited by the first network formed by cross-linkers with HRP/H2O2. Importantly, the tough RSF hydrogel changes the normally weak recognition of various RSF hydrogels and holds a great potential to be the material in biomedical field because it seems to be very promising regarding its biocompatibility, biodegradability, etc.

The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings.

Bioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas. Our understanding of the actual impact of bioturbation early in the Phanerozoic has been hampered by the lack of detailed analysis of the functional significance of specific burrow architectures. Integration of ichnologic and sedimentologic evidence from North China shows that deep-tier Thalassinoides mazes occur in lower Cambrian nearshore carbonate sediments, leading to intense disruption of the primary fabric. Comparison with modern studies suggest that some of the effects of this style of Cambrian bioturbation may have included promotion of nitrogen and ammonium fluxes across the sediment-water interface, average deepening of the redox discontinuity surface, expansion of aerobic bacteria, and increase in the rate of organic matter decomposition and the regeneration of nutrients. Our study suggests that early Cambrian sediment mixing in carbonate settings may have been more significant than assumed in previous models.

γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants.

γ-Aminobutyric acid (GABA) has high physiological activity in plant stress physiology. This study showed that the application of exogenous GABA by root drenching to moderately (MS, 150 mM salt concentration) and severely salt-stressed (SS, 300 mM salt concentration) plants significantly increased endogenous GABA concentration and improved maize seedling growth but decreased glutamate decarboxylase (GAD) activity compared with non-treated ones. Exogenous GABA alleviated damage to membranes, increased in proline and soluble sugar content in leaves, and reduced water loss. After the application of GABA, maize seedling leaves suffered less oxidative damage in terms of superoxide anion (O2(·-)) and malondialdehyde (MDA) content. GABA-treated MS and SS maize seedlings showed increased enzymatic antioxidant activity compared with that of untreated controls, and GABA-treated MS maize seedlings had a greater increase in enzymatic antioxidant activity than SS maize seedlings. Salt stress severely damaged cell function and inhibited photosynthesis, especially in SS maize seedlings. Exogenous GABA application could reduce the accumulation of harmful substances, help maintain cell morphology, and improve the function of cells during salt stress. These effects could reduce the damage to the photosynthetic system from salt stress and improve photosynthesis and chlorophyll fluorescence parameters. GABA enhanced the salt tolerance of maize seedlings.

Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury.

Promotion of cell growth and adhesion of a peptide hydrogel scaffold via mTOR/cadherin signaling.

Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neural tissue. However, the molecular signaling alternations have not been well elucidated to explain the impact of hydrogels on cell morphology. In our previous studies, a silk fibroin peptide (SF16) hydrogel was found to be an effective matrix for the viability, morphology, and proliferation of PC12 rat pheocrhomocytoma cells. We found that PC12 cells in the peptide hydrogel exhibited adhesive morphology compared to those cultured in agarose or collagen. Moreover, we identified that cell adhesion molecules (E- and N-cadherin) controlled by mTOR signaling were highly induced in PC12 cells cultured in the SF16 peptide hydrogel. Our findings suggest that the SF16 peptide might be suitable to be a cell-adhesion material in cell culture or tissue engineering, and mTOR/cadherin signaling is required for the cell adhesion in the SF16-peptide hydrogel.

Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China biodiversity hotspot and conservation implications.

Dietary information is lacking in most of small to mid-sized carnivores due to their elusive predatory behaviour and versatile feeding habits. The leopard cat (LPC; Prionailurus bengalensis) and the Asiatic golden cat (AGC; Catopuma temminckii) are two important yet increasingly endangered carnivore species in the temperate mountain forest ecosystem in Southwest China, a global biodiversity hotspot and a significant reservoir of China's endemic species. We investigated the vertebrate prey of the two sympatric felids using faecal DNA and a next-generation sequencing (NGS)/metabarcoding approach. Forty vertebrate prey taxa were identified from 93 LPC and 10 AGC faecal samples; 37 taxa were found in the LPC diet, and 20 were detected in the AGC diet. Prey included 27 mammalian taxa, 11 birds, one lizard and one fish, with 73% (29/40) of the taxa assigned to the species level. Rodents and pikas were the most dominant LPC prey categories, whereas rodents, pheasant, fowl and ungulates were the main AGC prey. We also analysed the seasonal and altitudinal variations in the LPC diet. Our results provide the most comprehensive dietary data for these felids and valuable information for their conservation planning.

Autophagy contributes to 4-Amino-2-Trifluoromethyl-Phenyl Retinate-induced differentiation in human acute promyelocytic leukemia NB4 cells.

As a classic differentiation agent, all-trans retinoic acid (ATRA) has been widely used in treatment of acute promyelocytic leukemia (APL). However, clinical application of ATRA has limitations. Our previous studies suggested that 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, could induce differentiation of APL cells in vivo and in vitro. To explore the underlying mechanism of ATPR, the effect of ATPR on autophagy of APL cells was observed in the present study. The results showed that the differentiation effect of ATPR on APL cells was accompanied with autophagy induction and PML-RARα degradation via activating Notch1 signaling pathway. Moreover, inhibition of autophagy using 3-methyladenine (3-MA) or small interfering RNA (siRNA) that targets essential autophagy gene ATG5 abrogated the ATPR-induced cell differentiation. Furthermore, when pretreated with DAPT, a γ-secretase inhibitor, the Notch1 signaling pathway was blocked in APL cells, followed by the reduction of ATPR-induced autophagy and differentiation. Taken together, these results suggested that autophagy play an important role in ATPR-induced cell differentiation, which may provide a novel approach to cure APL patients.

Fine-scale genetic structure analyses reveal dispersal patterns in a critically endangered primate, Trachypithecus leucocephalus.

Dispersal is a critically important life history trait of social organisms that has a major impact on the population genetic structure and social relationships within groups. Primates exhibit highly diversified dispersal and philopatry patterns, but knowledge of these patterns is difficult to obtain and usually limited to observations of a small number of focal social groups or individuals. Here, we investigated the dispersal pattern of a critically endangered colobine monkey, the white-headed langur (Trachypithecus leucocephalus), using molecular approaches, and sex-specific population genetic structure analyses at fine geographical scales. We non-invasively collected 403 fecal samples from 41 social groups across 90% of the langur's range in Fusui (FS) and Chongzuo (CZ) in southwestern Guangxi Province, China. We identified 214 unique individuals from the samples by genotyping 15 polymorphic autosomal microsatellite loci, a sex-specific marker, and sequencing the mitochondrial DNA (mtDNA) hypervariable region I (HVRI). We found higher intragroup than intergroup genetic relatedness in males and females in both populations. A significant positive correlation between genetic distance and geographical distance, that is a pattern of isolation-by-distance, was detected in females from the FS population, but not in males. Spatial autocorrelation analyses revealed high within-group relatedness in both sexes and populations, as well as an additional positive correlation at the 0.5-km distance class in females from the FS population. Furthermore, we inferred first-generation migrants using genetic assignment tests. Our results suggest that male T. leucocephalus disperse at random distances within habitat areas, whereas dispersal of females may mainly occur among adjacent groups near their home site. Our study provides the first genetic evidence for sex-biased dispersal in T. leucocephalus, which has important management and conservation implications for the species.

Multiple Colors Output on Voile through 3D Colloidal Crystals with Robust Mechanical Properties.

Distinguished from the chromatic mechanism of dyes and pigments, structural color is derived from physical interactions of visible light with structures that are periodic at the scale of the wavelength of light. Using colloidal crystals with coloring functions for fabrics has resulted in significant improvements compared with chemical colors because the structural color from colloidal crystals bears many unique and fascinating optical properties, such as vivid iridescence and nonphotobleaching. However, the poor mechanical performance of the structural color films cannot meet actual requirements because of the weak point contact of colloidal crystal particles. Herein, we demonstrate in this study the patterning on voile fabrics with high mechanical strength on account of the periodic array lock effect of polymers, and multiple structural color output was simultaneously achieved by a simple two-phase self-assembly method for printing voile fabrics with 3D colloidal crystals. The colored voile fabrics exhibit high color saturation, good mechanical stability, and multiple-color patterns printable. In addition, colloidal crystals are promising potential substitutes for organic dyes and pigments because colloidal crystals are environmentally friendly.

The Roles of Alpha-Momorcharin and Jasmonic Acid in Modulating the Response of Momordica charantia to Cucumber Mosaic Virus.

Alpha-momorcharin (α-MMC) is a type-I ribosome inactivating protein with a molecular weight of 29 kDa that is found in Momordica charantia, and has been shown to be effective against a broad range of human viruses as well as having anti-tumor activities. However, the role of endogenous α-MMC under viral infection and the mechanism of the anti-viral activities of α-MMC in plants are still unknown. To study the effect of α-MMC on plant viral defense and how α-MMC increases plant resistance to virus, the M. charantia-cucumber mosaic virus (CMV) interaction system was investigated. The results showed that the α-MMC level was positively correlated with the resistance of M. charantia to CMV. α-MMC treatment could alleviate photosystem damage and enhance the ratio of glutathione/glutathione disulfide in M. charantia under CMV infection. The relationship of α-MMC and defense related phytohormones, and their roles in plant defense were further investigated. α-MMC treatment led to a significant increase of jasmonic acid (JA) and vice versa, while there was no obvious relevance between salicylic acid and α-MMC. In addition, reactive oxygen species (ROS) were induced in α-MMC-pretreated plants, in a similar way to the ROS burst in JA-pretreated plants. The production of ROS in both ibuprofen (JA inhibitor) and (α-MMC+ibuprofen)-pretreated plants was reduced markedly, leading to a greater susceptibility of M. charantia to CMV. Our results indicate that the anti-viral activities of α-MMC in M. charantia may be accomplished through the JA related signaling pathway.

N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma.

Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147.

Mono-PEGylation of Alpha-MMC and MAP30 from Momordica charantia L.: Production, Identification and Anti-Tumor Activity.

PEGylation is a well-established and effective strategy to decrease immunogenicity, which can increase the stability and in vivo half-life time. However, the generation of multi-site modified products is inevitable due to the lysine chemistry, which will bring difficulties in subsequent research, such as purification and quantification. Site-specific modification by mPEG-succinimidyl carbonate (mPEG-SC) is a widely used method for N-terminal conjugation. In this study, we used it for site-directed modification on two ribosome-inactivating proteins (RIPs), alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30), from Momordica charantia L. According to the optimization of previous modification conditions, we compared Macro-Cap SP with SP-Sepharose FF chromatography for separating the final mPEGylated RIPs. Two kinds of methods both can obtain homogenous mPEGylated RIPs which were identified by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing electrophoresis (IEF), and matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) analysis. We also used iodine staining method to detect the amount of unmodified PEG. Furthermore, the inhibition activity of both mPEGylated and non-PEGylated RIPs against human lung adenocarcinoma epithelial A549 cells was detected. All of the results suggested that the mPEGylated α-MMC/MAP30 might be potentially developed as new anti-tumor drugs.

Characterization of re-grown floc size and structure: effect of mixing conditions during floc growth, breakage and re-growth process.

The impact of mixing speed in three stages-before breakage, during breakage, and after breakage-on re-grown floc properties was investigated by using a non-intrusive optical sampling and digital image analysis technique, respectively. And then, on the basis of different influence extent of mixing speed during each stage on size and structure of re-grown flocs, coagulation performance with varying mixing speed was analyzed. The results indicated that the broken flocs could not re-grow to the size before breakage in all cases. Furthermore, increasing mixing intensity contributed to the re-formation of smaller flocs with higher degree of compactness. For slow mixing before breakage, an increase in mixing speed had less influence on re-grown floc properties due to the same breakage strength during breakage, resulting in inconspicuous variation of coagulation efficiency. For rapid mixing during breakage, larger mixing speed markedly decreased the coagulation efficiency. This could be attributed that mixing speed during breakage generated greater influence on re-grown floc size. However, as slow mixing after breakage was elevated, the coagulation efficiency presented significant rise, indicating that slow mixing after breakage had more influence on re-grown floc structure upon re-structuring and re-arrangement mechanism.

Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling.

Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.

Cationic lioposomes with folic acid as targeting ligand for gene delivery.

In our previous Letter, we have carried out the synthesis of a novel DDCTMA cationic lipid which was formulated with DOPE for gene delivery. Herein, we used folic acid (FA) as targeting ligand and cholesterol (Chol) as helper lipid instead of DOPE for enhancing the stability of the liposomes. These liposomes were characterized by dynamic laser scattering (DLS), transmission electron microscopy (TEM) and agarose gel electrophoresis assays of pDNA binding affinity. The lipoplexes were prepared by using different weight ratios of DDCTMA/Chol (1:1, 2:1, 3:1, 4:1) liposomes and different concentrations of FA (50-200μg/mL) combining with pDNA. The transfection efficiencies of the lipoplexes were evaluated using pGFP-N2 and pGL3 plasmid DNA against NCI-H460 cells in vitro. Among them, the optimum gene transfection efficiency with DDCTMA/Chol (3:1)/FA (100μg/mL) was obtained. The results showed that FA could improve the gene transfection efficiencies of DDCTMA/Chol cationic liposome. Our results also convincingly demonstrated FA (100μg/mL)-coated DDCTMA/Chol (3:1) cationic liposome could serve as a promising candidate for the gene delivery.

Oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system.

In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state (UASS) with anaerobic filter (AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0-431mL O2/gvs were conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431mL O2/gvs increased the methane yield by 82.2%. Aeration intensities of 0-355mL O2/gvs were conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen (DO) of UASS and AF reactors kept around 1.39±0.27 and 0.99±0.38mg/L, respectively. pH was relatively stable around 7.11±0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85±7mL/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity.

Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite.

Cellulose is the most abundant, renewable, biodegradable natural polymer resource on earth, which can be a good substrate for catalysis. In this work, straw cellulose has been oxidized through 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation, and then a TEMPO oxidized straw cellulose/molybdenum sulfide (TOSC-MoS2) composite has been synthesized via a hydrothermal method. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis confirm that TOSC and MoS2 have successfully composited. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show the TOSC as a carbon nanotube-like structure and edged MoS2 grows on the TOSC substrate. The TOSC-MoS2 modified glassy carbon electrode (GCE) is used as a simple and non-enzymatic electrochemical sensor. Cyclic Voltammetry (CV) result shows TOSC-MoS2 has excellent electrocatalytic activity for the oxidation of nitrite. The amperometric response result indicates the TOSC-MoS2 modified GCE can be used to determine nitrite concentration in wide linear ranges of 6.0-3140 and 3140-4200µM with a detection limit of 2.0µM. The proposed sensor has good anti-interference property. Real sample analysis and the electrocatalytic mechanism have also been presented.

Effect of aluminum speciation on fouling mechanisms by pre-coagulation/ultrafiltration process with different NOM fractions.

Ultrafiltration is an emerging technology for drinking water production, but the membrane fouling is still a challenge. This study was carried out to investigate the effect of aluminum speciation on UF membrane fouling behavior by different NOM fractions-humic substances and proteins, as represented by humic acid (HA) and bovine serum albumin (BSA), respectively. The interesting results showed that the total fouling resistance of the mixture of HA-BSA-kaolinite solution without coagulant demonstrated a slight decrease in comparison with those of the individually filtered substances, indicating a mitigatory fouling effect. The hydrolysis of aluminum products was various as pH and membrane fouling was related to aluminum speciation. The average size of flocs dramatically increased and fractal dimension of flocs decreased with the increasing of pH value independent on water quality, which indicated that aluminum speciation had a significant impact on floc properties. For the mixture of HA-BSA-kaolinte, the slightly larger of flocs average size in comparison with the individual organic fraction after coagulation was probably attributing that BSA was encapsulated by HA to enlarge the molecular length and floc size further increased. The membrane performance also showed that coagulation effluent of HA-BSA-kaolinite mitigated membrane fouling. The strong linear relationship was observed between flocs fractal dimension and final membrane flux in this research. From the results, the control of flocs fractal dimension should be considered as a new technique for traditional hybrid coagulation/ultrafiltration system, which resulted in minimized total and irreversible fouling and has a meaningful engineering application value.

Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide.

The breakage and regrowth of flocs formed by sweep flocculation were investigated on different flocculation mechanisms using additional dosage coagulant of poly aluminium chloride (PACl) and non-ionic polyacrylamide (PAM) to explore the reversibility after floc breakage. The optimal dosage of PACl was 0.15 mM (as alum), and zeta potential exceeding 1 mV meant that sweep flocculation was dominant in the pre-flocculated process. Re-coagulation efficiency increased with additional coagulants dosing, and sedimentation rates of flocs re-formed by small additional dosage of non-ionic PAM are faster than that of flocs re-formed by additional PACl. For additional inorganic coagulant (PACl) during regrowth processes, few negatively charged particles that existed in water sample restricted the effect of charge neutralization. An amorphous aluminum hydroxide precipitation could re-activate the weaker points on the broken floc surface, but regrown flocs have loose structure indicating worse settleability. For additional non-ionic PAM dosing, lower dosage showed large values of fractal dimension and average size, probably due to that unfolded curly molecular chain and exposed amide groups of non-ionic PAM which provide superb conditions for amide group interacting with particles. The use of non-ionic PAM in flocculation has advantage of being more effective than the cationic PACl, probably because it may avoid the re-stabilization of broken flocs by polymer adsorption driven by electrostatic attraction. Hence, appropriate dosing of PAM after breakage could improve the flocs characteristics with large size and compact structure.

Isolation of microsatellite loci and reliable genotyping using noninvasive samples of a critically endangered primate, Trachypithecus leucocephalus.

Genetic information can be critical in identifying conservation priorities and developing conservation strategies. There is an urgent need for noninvasive genetic tools to study the wild populations of Asian colobine monkeys. The majority of these species are threatened with habitat destruction, population reduction and even extinction, but generally lack information on their genetic diversity and population structure. Genetic sampling and tissue collection have been scarce in these species owing to strict regulations on manipulation of endangered species, and the difficulties and risks associated with capturing these arboreal and fast-moving monkeys in the challenging environments that they inhabit. These difficulties have hindered the development of molecular genetic markers, which are usually derived from tissues or blood. In this study, we present a method for de novo microsatellite isolation and genotyping using DNA from noninvasive origins of a critically endangered Asian colobine, the white-headed langur (Trachypithecus leucocephalus). Genomic DNA isolated from hair was shown to be sufficient for microsatellite enrichment and isolation, with similar isolation efficiencies as from tissue DNA. We identified and characterized 20 polymorphic microsatellite loci, and evaluated their amplification success and genotyping reliability with 86 field-collected fecal samples. These results show that this panel of loci can produce reliable genotypes from fecal samples, and represent a useful tool for noninvasive investigation of genetic structure, individual identification and kinship assessment in this highly endangered species. Our approach can be applied to conservation genetic studies of other wild species that lack sequence information and tissue samples.

Cytoplasmic EpCAM over-expression is associated with favorable clinical outcomes in pancreatic cancer patients with Hepatitis B virus negative infection.

The identification of reliable prognostic markers that distinguish patients' status and predict therapeutic response can improve the clinical outcomes of pancreatic cancer patients. The epithelial cell adhesion molecule (EpCAM) is known to be highly expressed in cancers and serves as a prognosis factor. Generally, membranous EpCAM expression in cancer cells and its clinical significance are evaluated. However, there is also an evidence of cytoplasmic EpCAM distribution in cancer cells. Hence, we investigated which kind of the immunostaining pattern in pancreatic cancer patients was, and whether membranous or cytoplasmic immunostaining had clinical significance. We determined the cytoplasmic or membranous EpCAM expression by a well-established immunohistochemical staining protocol in 157 pairs of carcinoma and paired adjacent non-tumor pancreatic tissue samples using the EpCAM-specific antibody. Furthermore, we evaluated the relationship between tumoral EpCAM expression of resected specimens and patient's overall survival as well as other biological variables like clinical prognosis by Kaplan-Meier method and χ(2) test. We found that pancreatic cancer patients had expressed higher level of cytoplasmic EpCAM but lower level of membranous EpCAM, and their expressions were significantly correlated. Cytoplasmic EpCAM acted as a favorable prognosis factor on survival time in patients with HBV negative infection. Pancreatic cancer patients with cytoplasmic EpCAM over-expression and negative Hepatitis B virus infection might benefit further from post-surgery chemotherapy. These data suggested a potential role of cytoplasmic EpCAM in predicting patient's prognosis and determining therapeutic strategy.

Benzyl isothiocyanate inhibits breast cancer cell tumorigenesis via repression of the FoxH1-Mediated Wnt/β-catenin pathway.

The mechanisms underlying the growth inhibitory effect of Benzyl isothiocyanate (BITC) against breast cancer are still not fully understood. Therefore, we further investigated the mechanism in BITC triggering breast cancer. In the present study, we found that the overexpression of FOXH1 in breast cancers tissues and cells, and FOXH1 significantly promoted cell proliferation, invasion and tumorigenesis in vitro. FOXH1 significantly increased the expression levels of β-catenin, cyclinD1, and c-myc proteins in breast cancer cells. Furthermore, siβ-catenin reduced FOXH1 promotion of cell proliferation and invasion in breast cancer cells. Taken together, these results suggest that FOXH1 promoted breast cancer cell growth and invasion by potentiating the Wnt/β-catenin pathway, suggesting that FOXH1 may be a potential molecular target for breast cancer prevention and therapy. Furthermore, BITC treatment has remarkable effect on the expression level of FOXH1 and β-catenin mRNA and protein in MCF-7 cells, MDA-MB-231 cells and SUM 159 cells. BITC treatment has an obvious significance on transcriptional activity of FOXH1. Cell growth and invasion inhibition resulting from BITC exposure were significantly augmented by FoxH1 knockdown. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxH1-mediated tumorigenesis. Thus, the present study provides a novel insight into the underlying mechanism of tumorigenesis in BITC triggering breast cancer, indicating the therapeutic potential of FOXH1 in the treatment of breast cancer.

A biologically inspired variable-pH strategy for enhancing short-chain fatty acids (SCFAs) accumulation in maize straw fermentation.

This study investigates the feasibility of varying the pH to enhance the accumulation of short-chain fatty acids (SCFAs) in the in vitro fermentation of maize straw. The corresponding hydrolysis rate and the net SCFA yield increased as inoculum ratio (VSinoculum/VSsubstrate) increased from 0.09 to 0.79. The pH were maintained at 5.3, 5.8, 6.3, 6.8, 7.3, and 7.8, respectively. A neutral pH of approximately 6.8 was optimal for hydrolysis. The net SCFA yield decreased by 34.9% for a pH of less than 5.8, but remained constant at approximately 721±5mg/gvs for a pH between 5.8 and 7.8. In addition, results were obtained for variable and constant pH levels at initial substrate concentrations of 10, 30 and 50g/L. A variable pH increased the net SCFA yield by 23.6%, 29.0%, and 36.6% for concentrations of 10, 30 and 50g/L. Therefore, a variable pH enhanced SCFA accumulation in maize straw fermentation.

Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation.

Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

In Vivo Therapeutic Success of MicroRNA-155 Antagomir in a Mouse Model of Lupus Alveolar Hemorrhage.

Diffuse alveolar hemorrhage (DAH) is a rare but life-threatening complication of systemic lupus erythematosus (SLE). Pristane-treated B6 mice develop severe DAH within 2 weeks of treatment. MicroRNA-155 (miR-155) is a pleiotropic microRNA that plays a crucial role in the regulation of immune responses. Recent studies have revealed a pathogenic role of miR-155 in various autoimmune disorders. The purpose of this study was to examine the role of miR-155 in the development of DAH in pristane-induced lupus using miR-155-knockout (miR-155(-/-)) mice and miR-155 antagomir to silence miR-155.

Experimental and numerical characterization of floc morphology: role of changing hydraulic retention time under flocculation mechanisms.

The formation, breakage, and re-growth of flocs were investigated by using modified flocculation tests and numerical simulation to explore the evolution of floc morphology for different hydraulic retention times. The shorter the aggregation time was, the smaller the flocs produced for the same hydraulic conditions were. Another interesting discovery was that broken flocs that formed in shorter aggregation time had the capacity to completely recover, whereas those formed in a longer amount of time had rather worse reversibility of broken flocs. With the addition of the maximum motion step in the representative two-dimensional diffusion-limited aggregation (DLA) model, there was a transition for flocs from isotropic to anisotropic as the maximum motion step increased. The strength of flocs was mainly affected by the distribution of particles near the aggregated core rather than distant particles. A simplified breakage model, which found that broken flocs provided more chances for diffused particles to access the inner parts of flocs and to be uniformly packed around the aggregated core, was first proposed. Moreover, an important result showed that the floc fragments formed with a larger value of the maximum motion step had more growing sites than did those with a smaller msa value, which was a benefit of following the re-forming procedure.

Functions of human periodontal myofibroblast in vitro.

To investigate the functions of human periodontal myofibroblast (MFB) in vitro.

Low Genetic Diversity and Strong Geographical Structure of the Critically Endangered White-Headed Langur (Trachypithecus leucocephalus) Inferred from Mitochondrial DNA Control Region Sequences.

Many Asian colobine monkey species are suffering from habitat destruction and population size decline. There is a great need to understand their genetic diversity, population structure and demographic history for effective species conservation. The white-headed langur (Trachypithecus leucocephalus) is a Critically Endangered colobine species endemic to the limestone karst forests in southwestern China. We analyzed the mitochondrial DNA (mtDNA) control region sequences of 390 fecal samples from 40 social groups across the main distribution areas, which represented one-third of the total extant population. Only nine haplotypes and 10 polymorphic sites were identified, indicating remarkably low genetic diversity in the species. Using a subset of 77 samples from different individuals, we evaluated genetic variation, population structure, and population demographic history. We found very low values of haplotype diversity (h = 0.570 ± 0.056) and nucleotide diversity (π = 0.00323 ± 0.00044) in the hypervariable region I (HVRI) of the mtDNA control region. Distribution of haplotypes displayed marked geographical pattern, with one population (Chongzuo, CZ) showing a complete lack of genetic diversity (having only one haplotype), whereas the other population (Fusui, FS) having all nine haplotypes. We detected strong population genetic structure among habit patches (ΦST = 0.375, P < 0.001). In addition, the Mantel test showed a significant correlation between the pairwise genetic distances and geographical distances among social groups in FS (correlation coefficient = 0.267, P = 0.003), indicting isolation-by-distance pattern of genetic divergence in the mtDNA sequences. Analyses of demographic history suggested an overall stable historical population size and modest population expansion in the last 2,000 years. Our results indicate different genetic diversity and possibly distinct population history for different local populations, and suggest that CZ and FS should be considered as one evolutionarily significant unit (ESU) and two management units (MUs) pending further investigation using nuclear markers.

Actinomycin D inhibits cell proliferations and promotes apoptosis in osteosarcoma cells.

Actinomycin D (ActD), a well known transcription inhibitors, has been widely reported to induce cell apoptosis in several types of tumor cells by inhibiting the anti-apoptotic gene transcriptions. However, how ActD affects osteosarcoma cells survival and its molecular mechanism is currently unclear. In the present study, results of proliferation assays and Hoechst stainings suggested that MG63 human osteosarcoma cells showed impaired cell proliferations and significant apoptosis after ActD treatment. Moreover, biochemical results showed that cleaved caspase-3 is gradually increased with the increasing ActD concentrations and treated times. Importantly, results of western blots indicated that protein levels of cyclin factors, such as cyclin A, D1 and E, were all reduced after ActD treatment. And ActD treatments may inhibit mRNA transcription levels of these cyclin factors, which may finally lead to cell cycle arrest and consequently apoptosis. The present study have revealed a novel mechanism by which ActD inhibits osteosarcoma cell proliferations and induces apoptosis, and will provide an useful clue to chemotherapy in future treatment of osteosarcoma.

MicroRNA-145 expression in the plasma of patients with benign and malignant bone tumors and its effects on osteosarcoma cell proliferation and migration.

The present study intends to investigate microRNA-145 expression level in the plasma and tissue of patients with benign and malignant bone tumors and its effects on the proliferation and migration of osteosarcoma cells.