PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Nitin Kamble - Top 30 Publications

Association of Marek's Disease induced immunosuppression with activation of a novel regulatory T cells in chickens.

Marek's Disease Virus (MDV) is an alphaherpesvirus that infects chickens, transforms CD4+ T cells and causes deadly lymphomas. In addition, MDV induces immunosuppression early during infection by inducing cell death of the infected lymphocytes, and potentially due to activation of regulatory T (Treg)-cells. Furthermore, immunosuppression also occurs during the transformation phase of the disease; however, it is still unknown how the disease can suppress immune response prior or after lymphoma formation. Here, we demonstrated that chicken TGF-beta+ Treg cells are found in different lymphoid tissues, with the highest levels found in the gut-associated lymphoid tissue (cecal tonsil: CT), fostering an immune-privileged microenvironment exerted by TGF-beta. Surprisingly, significantly higher frequencies of TGF-beta+ Treg cells are found in the spleens of MDV-susceptible chicken lines compared to the resistant line, suggesting an association between TGF-beta+ Treg cells and host susceptibility to lymphoma formation. Experimental infection with a virulent MDV elevated the levels of TGF-beta+ Treg cells in the lungs as early as 4 days post infection, and during the transformation phase of the disease in the spleens. In contrast to TGF-beta+ Treg cells, the levels of CD4+CD25+ T cells remained unchanged during the infection and transformation phase of the disease. Furthermore, our results demonstrate that the induction of TGF-beta+ Treg cells is associated with pathogenesis of the disease, as the vaccine strain of MDV did not induce TGF-beta+ Treg cells. Similar to human haematopoietic malignant cells, MDV-induced lymphoma cells expressed high levels of TGF-beta but very low levels of TGF-beta receptor I and II genes. The results confirm that COX-2/ PGE2 pathway is involved in immunosuppression induced by MDV-lymphoma cells. Taken together, our results revealed a novel TGF-beta+ Treg subset in chickens that is activated during MDV infection and tumour formation.

Pathway analysis of differentially expressed genes in Mycobacterium bovis challenged bovine macrophages.

The immune signalling genes during challenge of bovine macrophages with bacterial products derived from disease causing bacteria in cattle were investigated. An in-vitro cell culture model were challenged to Mycobacterium bovis of bovine monocyte derived macrophages. Macrophages from healthy and already infected animals can both be fully activated during M. bovis infection. Analysis of mRNA abundance in peripheral blood mononuclear cells from M. bovis infected and non-infected cattle were performed as a controls. Cells of treatment were challenged after six days for six hours incubation at 37 °C, with 5% CO2, to total RNA was extracted then cDNA labelling, hybridization and scanning for microarray methods have been developed for microarray based immune related gene expression analysis. The differential expressions twenty genes (IL1, CCL3, CXCR4, TNF, TLR2, IL12, CSF3, CCR5, CCR3, MAPT, NFKB1, CCL4, IL6, IL2, IL23A, CCL20, IL8, CXCL8, TRIP10, CXCL2 and IL1B) implicated in M. bovis response were examined Agilent Bovine_GXP_8 × 60 K microarray platform. The outcomes provided confirmation of a pro-inflammatory gene expression profile in PBMC from Bovine tuberculosis infected animals in response to antigen stimulation. Cells of treatment were challenged after six days for six hours incubation then pathways analysis of Toll like receptor and Chemokine signalling pathway study of responsible genes in bovine tuberculosis. The PBMC from M. bovis infected cattle exhibit different transcriptional profiles compared with PBMC from healthy control animals in response to M. bovis antigen stimulation, providing evidence of a novel genes expression program due to M. bovis exposure. It will guide future studies, regarding the complex macrophage specific signalling pathways stimulated upon phagocytosis of M. bovis and role of signalling pathways in creating the host immune response to cattle tuberculosis.

Stress Inducible Galactinol Synthase of Chickpea (CaGolS) Implicates in Heat and Oxidative Stress Tolerance through Reducing Stress Induced Excessive Reactive Oxygen Species Accumulation.

Raffinose Family Oligosaccharides (RFOs) participates in various aspects of plant physiology and galactinol synthase (GolS, EC 2.4.1.123) catalyzes the key step of RFO biosynthesis. Stress induced accumulation of RFOs particularly galactinol and raffinose has been reported in few plants; however their precise role and mechanistic insight in stress adaptation remain elusive. In present study, we have shown that the GolS activity as well as galactinol and raffinose content are significantly increased in response to various abiotic stresses in chickpea. Transcriptional analysis indicated that the CaGolS1 and CaGolS2 genes are induced in response to different abiotic stresses. Interestingly, heat and oxidative stress preferentially induce CaGolS1 over CaGolS2. Insilco analysis revealed several common yet distinct cis-acting regulatory elements in their 5' upstream regulatory sequences. Further, in vitro biochemical analysis revealed that CaGolS1 enzyme functions better in stressful conditions than CaGolS2 enzyme. Finally, Arabidopsis transgenic plants constitutively overexpressing CaGolS1 or CaGolS2 not only exhibits significantly increased galactinol but also raffinose content and display better growth responses than wild type or vector control plants when exposed to heat and oxidative stress. Further, improved tolerance of transgenic lines are associated with reduced accumulation of reactive oxygen species (ROS) and consequent lipid peroxidation as compared to control plants.Collectively, our data implies that GolS enzyme activity and consequent galactinol and raffinose content are significantly increased in response to stresses to mitigate stress induced growth inhibition by restricting excessive ROS accumulation and consequent lipid peroxidation in plants.

Intracellular delivery of HA1 subunit antigen through attenuated Salmonella Gallinarum act as a bivalent vaccine against fowl typhoid and low pathogenic H5N3 virus.

Introduction of novel inactivated oil-emulsion vaccines against different strains of prevailing and emerging low pathogenic avian influenza (LPAI) viruses is not an economically viable option for poultry. Engineering attenuated Salmonella Gallinarum (S. Gallinarum) vaccine delivering H5 LPAI antigens can be employed as a bivalent vaccine against fowl typhoid and LPAI viruses, while still offering economic viability and sero-surveillance capacity. In this study, we developed a JOL1814 bivalent vaccine candidate against LPAI virus infection and fowl typhoid by engineering the attenuated S. Gallinarum to deliver the globular head (HA1) domain of hemagglutinin protein from H5 LPAI virus through pMMP65 constitutive expression plasmid. The important feature of the developed JOL1814 was the delivery of the HA1 antigen to cytosol of peritoneal macrophages. Immunization of chickens with JOL1814 produced significant level of humoral, mucosal, cellular and IL-2, IL-4, IL-17 and IFN-γ cytokine immune response against H5 HA1 and S. Gallinarum antigens in the immunized chickens. Post-challenge, only the JOL1814 immunized chicken showed significantly faster clearance of H5N3 virus in oropharyngeal and cloacal swabs, and 90% survival rate against lethal challenge with a wild type S. Gallinarum. Furthermore, the JOL1814 immunized were differentiated from the H5N3 LPAI virus infected chickens by matrix (M2) gene-specific real-time PCR. In conclusion, the data from the present showed that the JOL1814 can be an effective bivalent vaccine candidate against H5N3 LPAI and fowl typhoid infection in poultry while still offering sero-surveillance property against H5 avian influenza virus.

Live-attenuated auxotrophic mutant of Salmonella Typhimurium expressing immunogenic HA1 protein enhances immunity and protective efficacy against H1N1 influenza virus infection.

To evaluate the efficacy of attenuated Salmonella Typhimurium (JOL912) as a live bacterial vaccine vector.

Orally administered live attenuated Salmonella Typhimurium protects mice against lethal infection with H1N1 influenza virus.

Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. Similarly, the mRNA copy number of interferon-inducible genes (ISGs), Mx and ISG15, were significantly increased in both the orally and the nasally inoculated mice. Post PR8 virus lethal challenge, the nasal JOL911 and the PBS control group mice showed significant loss of body weight with 70% and 100% mortality, respectively, compared to only 30% mortality in the oral JOL911 group mice. Post sub-lethal challenge, the significant reduction in PR8 virus copy number in lung tissue was observed in oral [on day 4 and 6 post-challenge (dpc)] and nasal (on 4dpc) than the PBS control group mice. The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge.

Homologous prime-boost immunization with live attenuated Salmonella enterica serovar Senftenberg and its preventive efficacy against experimental challenge with various strains of S. Senftenberg.

The heterogeneity observed regarding persistence, and subsequent fecal shedding pattern of the Salmonella Senftenberg (S. Senftenberg) serovar in chicken's calls for development of the optimized immunization strategy which can provide protection against various S. Senftenberg isolated. Optimization of an immunization strategy with a live attenuated S. Senftenberg (Δlon and ΔcpxR) vaccine candidate (JOL1587) was undertaken in this study to evaluate the ability of a homologous prime-boost immunization strategy (using JOL1587) to confer protection against four different S. Senftenberg isolates in chickens.

Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation.

Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation.

Characterization and Evaluation of a Salmonella enterica Serotype Senftenberg Mutant Created by Deletion of Virulence-Related Genes for Use as a Live Attenuated Vaccine.

Natural infections of chickens with Salmonella enterica subsp. enterica serovar Senftenberg (S. Senftenberg) are characterized by low-level intestinal invasiveness and insignificant production of antibodies. In this study, we investigated the potential effects of lon and cpxR gene deletions on the invasiveness of S Senftenberg into the intestinal epithelium of chickens and its ability to induce an immune response, conferring protection against S Senftenberg infection. With the allelic exchange method, we developed JOL1596 (Δlon), JOL1571 (ΔcpxR), and JOL1587 (Δlon ΔcpxR) deletion mutants from wild-type S Senftenberg. Deletion of the lon gene from S Senftenberg produced increased frequency of elongated cells, with significantly greater amounts of exopolysaccharide (EPS) than in the cpxR-deleted strain and the wild-type strain. The in vivo intestinal loop invasion assay showed a significant increase in epithelial invasiveness for JOL1596 (Δlon) and JOL1587 (Δlon ΔcpxR), compared to JOL1571 (ΔcpxR) and the wild-type strain. Furthermore, the S Senftenberg wild-type and mutant strains were internalized at high levels inside activated abdominal macrophages from chicken. The in vivo inoculation of JOL1587 (Δlon ΔcpxR) into chickens led to colonization of the liver, spleen, and cecum for a short time. Chickens inoculated with JOL1587 (Δlon ΔcpxR) showed significant increases in humoral, mucosal, and cellular immune responses specific to S Senftenberg antigens. Postchallenge, compared to the control group, the JOL1587 (Δlon ΔcpxR)-inoculated chickens showed not only lower persistence but also faster clearance of wild-type S Senftenberg from the cecum. We conclude that the increased intestinal invasiveness and colonization of internal organs exhibited by JOL1587 (Δlon ΔcpxR) led to the establishment of immunogenicity and conferred protective efficacy against S Senftenberg infections in chickens.

Duck gut viral metagenome analysis captures snapshot of viral diversity.

Ducks (Anas platyrhynchos) an economically important waterfowl for meat, eggs and feathers; is also a natural reservoir for influenza A viruses. The emergence of novel viruses is attributed to the status of co-existence of multiple types and subtypes of viruses in the reservoir hosts. For effective prediction of future viral epidemic or pandemic an in-depth understanding of the virome status in the key reservoir species is highly essential.

A live attenuated Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens.

A live attenuated Salmonella Enteritidis (SE) capable of constitutively secreting detoxified double mutant Escherichia coli heat labile toxin (dmLT) was developed. The biologically adjuvanted strain was generated via transformation of a highly immunogenic SE JOL1087 with a plasmid encoding dmLT gene cassette; the resultant strain was designated JOL1641. A balanced-lethal host-vector system stably maintained the plasmid via auxotrophic host complementation with a plasmid encoded aspartate semialdehyde dehydrogenase (asd) gene. Characterization by western blot assay revealed the dmLT subunit proteins in culture supernatants of JOL1641. For the investigation of adjuvanticity and protective efficacy, chickens were immunized via oral or intramuscular routes with PBS, JOL1087 and JOL1641. Birds immunized with JOL1641 showed significant (P ≤ 0.05) increases in intestinal SIgA production at the 1(st) and 2(nd) weeks post-immunization via oral and intramuscular routes, respectively. Interestingly, while both strains showed significant splenic protection via intramuscular immunization, JOL1641 outperformed JOL1087 upon oral immunization. Oral immunization of birds with JOL1641 significantly reduced splenic bacterial counts. The reduction in bacterial counts may be correlated with an adjuvant effect of dmLT that increases SIgA secretion in the intestines of immunized birds. The inclusion of detoxified dmLT in the strain did not cause adverse reactions to birds, nor did it extend the period of bacterial fecal shedding. In conclusion, we report here that dmLT could be biologically incorporated in the secretion system of a live attenuated Salmonella-based vaccine, and that this construction is safe and could enhance mucosal immunity, and protect immunized birds against wild-type challenge.

Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity.

PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity.

Interaction of a live attenuated Salmonella Gallinarum vaccine candidate with chicken bone marrow-derived dendritic cells.

Salmonella enterica serovar Gallinarum (SG) is a Gram-negative intracellular host-adapted pathogen that causes fowl typhoid. Attenuated strains of SG are proven and widely used vaccine candidates because of advantages like induction of strong humoral and cell-mediated immune responses. In the present study, we investigated the interaction of chicken bone marrow-derived dendritic cells (chBM-DCs) with an attenuated SG (JOL1355) strain that secretes a heat-labile enterotoxin B subunit protein previously shown to successfully vaccinate chickens. ChBM-DCs were isolated and cultured in the presence of recombinant chicken GM-CSF and IL-4 cytokines. The chBM-DCs were infected with JOL1355 at an multiplicity of infection of 10. JOL1355 was able to invade dendritic cells (DCs); however, the survival of JOL1355 in DCs decreased over time. At 24 h post infection, IL-6, IL-10 and IFN-γ transcript levels were significantly increased in JOL1355-infected DCs compared to non-stimulated DCs. Flow cytometry analysis showed an increased proportion of cells producing CD40, CD80, and MHC class II in the JOL1355-infected cultures compared to the non-stimulated control. In addition, JOL1355-stimulated chBM-DCs could induce significant expression of IL-2 in co-culture with autologous CD4+ T cells. Based on these results, we conclude that chBM-DCs are capable of internalizing the live attenuated SG vaccine candidate and the infected chBM-DCs show signs of maturation as evidenced by the upregulated expression of costimulatory molecules and cytokines.

Inhibition of Salmonella-induced apoptosis as a marker of the protective efficacy of virulence gene-deleted live attenuated vaccine.

Vaccination is one of the best protection strategies against Salmonella infection in humans and chickens. Salmonella bacteria must induce apoptosis prior to initiating infection, pathogenesis and evasion of host immune responses. In this study, we evaluated the efficacy of vaccinating chickens against Salmonella Enteritidis (SE) using a vaccine candidate strain (JOL919), constructed by deleting the lon and cpxR genes from a wild-type SE using an allelic exchange method. In present study day old chickens were inoculated with 1×10(7)cfu (colony forming unit) of JOL919 per os. We measured cell-mediated immunity, protective efficacy and extent of apoptosis induction in splenocytes. Seven days post-immunization, the number of CD3+CD4+ and CD3+ CD8+ T cells was significantly higher in the immunized group compared to the control group, indicating a significant augmentation of systemic immune response. The internal organs of chickens immunized with JOL919 had a significantly lower challenge-strain recovery, indicating effective protection and clearance of the challenge strain. Post-challenge, the number of apoptotic cells in the immunized group was significantly lower than in the control group. Additionally, AV/PI (Annexin V/propidium iodide) staining was performed to differentiate between apoptotic cells and necrotic cells, which corroborated TUNEL-assay (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling) results. The proportions of AV+/PI- and AV+/PI+ cells, which represent the proportions of early apoptotic and late apoptotic/early necrotic cells present, respectively, were significantly lower in the immunized group. Our findings suggest that the apoptotic splenocytes in immunized chickens significantly decreased in number, which occurred concomitantly with a significant rise in systemic immune response and bacterial clearance. This suggests that inhibition of apoptosis may be a marker of protection efficacy in immunized chickens.

A Live Salmonella Gallinarum Vaccine Candidate Secreting an Adjuvant Protein Confers Enhanced Safety and Protection Against Fowl Typhoid.

Live attenuated vaccines are used for effective protection against fowl typhoid (FT) in domestic poultry. In this study, a lon/cpxR/asd deletion mutant of Salmonella Gallinarum expressing the B subunit of a heat labile toxin (LTB) from Escherichia coli, a known adjuvant, was cloned in a recombinant p15A ori plasmid, JOL1355, and evaluated as a vaccine candidate in chickens. The plasmid was shown to be stable inside the attenuated Salmonella Gallinarum cell after three successive generations. Moreover, from an environmental safety point of view, apart from day 1 the JOL1355 strain was not detected in feces through day 21 postinoculation. For the efficacy of JOL1355, a total of 100 chickens were equally divided into two groups. Group A (control) chickens were intramuscularly inoculated with phosphate-buffered saline at 4 and 8 wk of age. Group B chickens were primed and boosted via the intramuscular route with 200 μL of a bacterial suspension of JOL1355 containing 1 × 10(8) colony forming units. All the chickens in Group A and B were challenged at 3 wk postbooster by oral inoculation with a wild-type Salmonella Gallinarum strain, JOL420. The JOL1355-immunized group showed significant protection and survival against the virulent challenge compared to the nonimmunized group. In addition, Group B exhibited a significantly higher humoral immune response, and the chickens remained healthy without any symptoms of anorexia, diarrhea, or depression. Group B also exhibited a significantly lower mortality rate of 4% compared to the 46% of the control group, which can be attributed to higher immunogenicity and better protection. The Group B chickens had significantly lower lesion scores for affected organs, such as the liver and spleen, compared to those of the control chickens (P < 0.01). These findings suggest that JOL1355 is a promising candidate for a safe and highly immunogenic vaccine against FT.

Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.

Small heat shock proteins (sHSPs) are a diverse group of proteins and are highly abundant in plant species. Although majority of these sHSPs were shown to express specifically in seed, their potential function in seed physiology remains to be fully explored. Our proteomic analysis revealed that OsHSP18.2, a class II cytosolic HSP is an aging responsive protein as its abundance significantly increased after artificial aging in rice seeds. OsHSP18.2 transcript was found to markedly increase at the late maturation stage being highly abundant in dry seeds and sharply decreased after germination. Our biochemical study clearly demonstrated that OsHSP18.2 forms homooligomeric complex and is dodecameric in nature and functions as a molecular chaperone. OsHSP18.2 displayed chaperone activity as it was effective in preventing thermal inactivation of Citrate Synthase. Further, to analyze the function of this protein in seed physiology, seed specific Arabidopsis overexpression lines for OsHSP18.2 were generated. Our subsequent functional analysis clearly demonstrated that OsHSP18.2 has ability to improve seed vigor and longevity by reducing deleterious ROS accumulation in seeds. In addition, transformed Arabidopsis seeds also displayed better performance in germination and cotyledon emergence under adverse conditions. Collectively, our work demonstrates that OsHSP18.2 is an aging responsive protein which functions as a molecular chaperone and possibly protect and stabilize the cellular proteins from irreversible damage particularly during maturation drying, desiccation and aging in seeds by restricting ROS accumulation and thereby improves seed vigor, longevity and seedling establishment.

Development and evaluation of a Salmonella typhimurium flagellin based chimeric DNA vaccine against infectious bursal disease of poultry.

Infectious bursal disease (IBD) is an acute immunosuppressive disease of young chicks, caused by a double-stranded RNA virus. VP2 being the major capsid protein of the virus is an ideal vaccine candidate possessing the neutralizing epitopes. The present study involves the use of flagellin (fliC) as a genetic adjuvant to improve the immune response of VP2 based DNA vaccine against IBD. Our findings revealed that birds immunized with plasmid pCIVP2fliC showed robust immune response than pCIVP2 immunized groups. Further, challenge study proved that genetic fusion of fliC and VP2 can provide a comparatively higher level of protection against vvIBDV challenge in chickens than VP2 alone. These results thus indicate that Salmonella flagellin could enhance the immune responses and protection efficacy of a DNA vaccine candidate against IBDV infection in chickens, highlighting the potential of flagellin as a genetic adjuvant in the prevention of vvIBDV infection.

Protective effects of recombinant glycoprotein D based prime boost approach against duck enteritis virus in mice model.

Duck virus enteritis, also known as duck plague, is an acute herpes viral infection of ducks caused by duck enteritis virus (DEV). The method of repeated immunization with a live attenuated vaccine has been used for the prevention and control of duck enteritis virus (DEV). However, the incidence of the disease in vaccinated flocks and latency reactivation are the major constraints in the present vaccination programme. The immunogenicity and protective efficacy afforded by intramuscular inoculation of plasmid DNA encoding DEV glycoprotein D (pCDNA-gD) followed by DEV gD expressed in Saccharomyces cerevisia (rgD) was assessed in a murine model. Compared with mice inoculated with DNA (pCDNA-gD) or protein (rgD) only, mice inoculated with the combination of gD DNA and protein had enhanced ELISA antibody titers to DEV and had accelerated clearance of virus following challenge infection. Furthermore, the highest levels of lymphocyte proliferation response, IL-4, IL-12 and IFN-γ production were induced following priming with the DNA vaccine and boosting with the rgD protein. For instance, the specially designed recombinant DEV vector vaccine would be the best choice to use in ducks. It offers an excellent solution to the low vaccination coverage rate in ducks. We expect that the application of this novel vaccine in the near future will greatly decrease the virus load in the environment and reduce outbreaks of DEV in ducks.

Adaptation and growth kinetics study of an Indian isolate of virulent duck enteritis virus in Vero cells.

Duck virus enteritis, also known as duck plague, is a viral infection of ducks caused by duck enteritis virus (DEV). The control of the disease is mainly done by vaccination with chicken embryo adapted live virus that is known to be poorly immunogenic and elicits only partial protection. Further, the embryo propagated vaccine virus pose a threat of harboring other infectious agents. Seeing these limitations, the present study reports for the first time regarding propagation and adaptation of a virulent Indian isolate of duck enteritis virus in Vero cell line. In this study isolation of an outbreak virus from Kerala state was done in chicken embryo fibroblast cell culture (CEF). Then adapted the DEV isolate in the Vero cell line. The characteristic cytopathic effects (CPE) of clumping and fusion of Vero cells were observed starting from the 7th passage onwards. The presence of the virus and its multiplication in Vero cells was confirmed by detection of viral specific DNA and antigen by using polymerase chain reaction (PCR) and indirect immuno fluorescent assay (IIFA), respectively. PCR detection of DEV using self designed primers for US4 (gD) and UL30 (DNA Polymerase) gene has been reported for the in the present study. The kinetics of DEV in Vero cells revealed a maximum infectivity titer of 10(5.6) TCID 50/ml after 48hr of viral infection. Compared to chicken embryo adapted DVE vaccine virus, the Vero cell culture system is free from other infectious agents. So it will be a good candidate for cultivation and propagation of duck enteritis virus vaccine strain. Further research studies are suggested to explore the feasibility of utilizing this Vero cell culture adapted DEV isolate for developing an attenuated vaccine virus against duck virus enteritis.

Evolutionary and bioinformatic analysis of the spike glycoprotein gene of H120 vaccine strain protectotype of infectious bronchitis virus from India.

The infectious bronchitis virus is a causative agent of avian infectious bronchitis (AIB), and is is an important disease that produces severe economic losses to the poultry industry worldwide. Recent AIB outbreaks in India have been associated with poor growth in broilers, drop in egg production, and thin egg shells in layers. The complete spike gene of Indian AIB vaccine strain was amplified and sequenced using a conventional reverse transcription polymerase chain reaction and is submitted to the GenBank (accession no KF188436). Phylogenetic analysis revealed that the vaccine strain currently used belongs to H120 genotype, an attenuated strain of Massachusetts (Mass) serotype. Nucleotide and amino acid sequence comparisons have shown that the reported spike gene from Indian isolates have 71.8%-99% and 71.4%-96.9% genetic similarity with the sequenced H120 strain. The study identifies live attenuated IBV vaccine strain, which is routinely used for vaccination, for the first time. Based on nucleotide and amino acid relatedness studies of the vaccine strain with reported IBV sequences from India, it is shown that the current vaccine strain is efficient in controlling the IBV infection. Continuous monitoring of IBV outbreaks by sequencing for genotyping and in vivo cross protection studies for serotyping is not only important for epidemiological investigation but also for evaluation of efficacy of the current vaccine.

Recombinant nucleocapsid protein based single serum dilution ELISA for the detection of antibodies to infectious bronchitis virus in poultry.

Avian infectious bronchitis is ubiquitous and highly contagious disease of poultry, with profound effect on commercial poultry production. For effective control of infectious bronchitis virus (IBV), quick and specific diagnosis is of utmost importance. In this study, the virus was isolated from clinical samples from India and the full length nucleocapsid (N) gene was amplified, cloned and expressed in a prokaryotic system. The purified recombinant N protein based single serum dilution enzyme linked immunosorbent assay (ELISA) was developed for IBV to measure specific antibody in the sera of chickens. A total of 310 chicken sera samples were tested using the commercial IDEXX kit along with the assay developed. A linear correlation was obtained between predicted antibody titres at a single working dilution of 1:100 and the corresponding serum titres observed as determined by the standard serial dilution method. Regression analysis was used to construct a standard curve from which an equation was derived which confirmed their correlation. The developed equation was then used to extrapolate predicated ELISA antibody titer from corrected absorbance readings of the single working dilution. The assay proved to be specific (95.8%) and sensitive (96.8%) when compared to the commercial IDEXX ELISA test.

Optical properties and laser damage threshold of HfO(2)-SiO(2) mixed composite thin films.

HfO(2)-SiO(2) mixed composite thin films have been deposited on fused silica substrate by co-evaporation of HfO(2) and SiO(2) through the reactive electron-beam evaporation technique. The composition-dependent refractive index and the absorption coefficient have been analyzed using different effective medium approximation (EMA) models in order to evaluate the suitability of these models for such mixed composite thin films. The discrepancies between experimentally determined and EMA-computed values are explained through microstructural and morphological evolutions observed in these mixed composite films. Finally, the dependence of the laser damage threshold as a function of silica content has been investigated, and the improved laser-induced damage threshold for films having more than 80% silica content has been explained through the defect-assisted multiphoton ionization process.

Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses.

myo-Inositol monophosphatase (IMP) is an essential enzyme in the myo-inositol metabolic pathway where it primarily dephosphorylates myo-inositol 1-phosphate to maintain the cellular inositol pool which is important for many metabolic and signalling pathways in plants. The stress-induced increased accumulation of inositol has been reported in a few plants including chickpea; however, the role and regulation of IMP is not well defined in response to stress. In this work, it has been shown that IMP activity is distributed in all organs in chickpea and was noticeably enhanced during environmental stresses. Subsequently, using degenerate oligonucleotides and RACE strategy, a full-length IMP cDNA (CaIMP) was cloned and sequenced. Biochemical study revealed that CaIMP encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity, although maximum activity was observed with the myo-inositol 1-phosphate and l-galactose 1-phosphate substrates. Transcript analysis revealed that CaIMP is differentially expressed and regulated in different organs, stresses and phytohormones. Complementation analysis in Arabidopsis further confirmed the role of CaIMP in l-galactose 1-phosphate and myo-inositol 1-phosphate hydrolysis and its participation in myo-inositol and ascorbate biosynthesis. Moreover, Arabidopsis transgenic plants over-expressing CaIMP exhibited improved tolerance to stress during seed germination and seedling growth, while the VTC4/IMP loss-of-function mutants exhibited sensitivity to stress. Collectively, CaIMP links various metabolic pathways and plays an important role in improving seed germination and seedling growth, particularly under stressful environments.

Mercuric chloride-induced gastrin/cholecystokinin 8 immunoreactivity in the central nervous system of the terrestrial slug Semperula maculata: an immunohistochemical study.

We measured the immunoreactivity of the neuropeptide gastrin cholecystokinin 8 (gastrin/CCK 8) in neurons of the terrestrial slug Semperula maculata following acute treatment with mercuric chloride (HgCl2). The distribution of gastrin/CCK 8 was analyzed in neurons of different regions, specifically from cerebral ganglia (procerebrum (pro-c), mesocerebrum (meso-c) and metacerebrum (meta-c). In the control group, neurons of pedal, pleural, parietal and visceral ganglia showed positive immunoreactivity using vertebrate antiserum against gastrin/CCK 8. Gastrin/CCK 8 immunoreactivity was also seen in the fibers and neuropil region of all ganglia. In the cerebral ganglion, 10, 12 and 8 % of the neurons from pro-c, meso-c and meta-c, respectively, were stained with the antibody. The immunostaining was increased in neurons (giant, large, medium and small) after HgCl2 treatment. The treatment greatly increased the mucin content within the neurons. Exposure to HgCl2 enhanced gastrin immunoreactivity in the neurons and this increased with time. Results are discussed in the context of neuropathology in cerebral ganglia associated with the feeding behavior of Semperula maculata.

Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells.

The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

Neurohistochemistry in molluscan species: focus on extracellular matrix.

Carbohydrate polymers with acid-base properties of extracellular matrix (ECM) have a critical impact on guidance, migration and synaptic transmission. The present study showed acid-base properties of ECM stained with histochemical techniques. The central nervous system (CNS) of mature terrestrial slug Semperula maculata and freshwater bivalve Lamellidens corrianus was selected to visualize sulphated and carboxylic strong acid groups. Protein and carbohydrate molecules were found scattered in three different regions, viz. periganglionic sheath, along with the basement lamina, interperikaryal space including the perineuronal net, and neuropil, in both the molluscan species. Sulphated proteoglycans were abundant in periganglionic sheath of S. maculata and also occurred in the neuropil of L. corrianus. The interperikaryal space contained carboxyl groups along with hyaluronic acid, and neuropil contained abundant glycogen moiety in both species. Comparing the SDS-PAGE of the neural tissue extracts revealed protein molecules that were found in the same fraction. The ECM of neuronal cells from S. maculata and L. corrianus presented different kinds of glycoproteins and proteoglycans, which showed its morphological as well as habitual differentiation.

Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.