A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Olli Vapalahti - Top 30 Publications

Development of a high-throughput colorimetric Zika virus infection assay.

Zika virus (ZIKV) is an emerging pathogen that causes congenital infections which may result in birth defects, such as microcephaly. Currently, no approved treatment or vaccination is available. ZIKV can be readily detected in cell culture where virally infected cells are normally stained by specific antibodies. As ZIKV regularly causes a cytopathic effect, we were wondering whether this viral property can be used to quantitatively determine viral infectivity. We here describe the use of an 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide-(MTT)-based cell viability assay that allows to determine ZIKV-induced cell death. We show that this colorimetric assay quantifies ZIKV infection over a broad range of viral dilutions in both monkey and human cells. It allows to determine inhibitory activities of antivirals that block ZIKV or to define the neutralizing antibody titers of ZIKV antisera. This MTT-based ZIKV detection assay can be evaluated by naked eye or computational tools, has a broad linear range, does not require large equipment or costly reagents, and thus represents a promising alternative to antibody-based assays, in particular in resource-poor settings. We propose to use this simple, fast, and cheap method for quantification of ZIKV neutralizing antibodies and testing of antiviral compounds.

Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids.

The recent Zika virus (ZIKV) epidemic is associated with microcephaly in newborns. Although the connection between ZIKV and neurodevelopmental defects is widely recognized, the underlying mechanisms are poorly understood. Here we show that two recently isolated strains of ZIKV, an American strain from an infected fetal brain (FB-GWUH-2016) and a closely-related Asian strain (H/PF/2013), productively infect human iPSC-derived brain organoids. Both of these strains readily target to and replicate in proliferating ventricular zone (VZ) apical progenitors. The main phenotypic effect was premature differentiation of neural progenitors associated with centrosome perturbation, even during early stages of infection, leading to progenitor depletion, disruption of the VZ, impaired neurogenesis, and cortical thinning. The infection pattern and cellular outcome differ from those seen with the extensively passaged ZIKV strain MR766. The structural changes we see after infection with these more recently isolated viral strains closely resemble those seen in ZIKV-associated microcephaly.

Co-infecting Reptarenaviruses Can Be Vertically Transmitted in Boa Constrictor.

Boid inclusion body disease (BIBD) is an often fatal disease affecting mainly constrictor snakes. BIBD has been associated with infection, and more recently with coinfection, by various reptarenavirus species (family Arenaviridae). Thus far BIBD has only been reported in captive snakes, and neither the incubation period nor the route of transmission are known. Herein we provide strong evidence that co-infecting reptarenavirus species can be vertically transmitted in Boa constrictor. In total we examined five B. constrictor clutches with offspring ranging in age from embryos over perinatal abortions to juveniles. The mother and/or father of each clutch were initially diagnosed with BIBD and/or reptarenavirus infection by detection of the pathognomonic inclusion bodies (IB) and/or reptarenaviral RNA. By applying next-generation sequencing and de novo sequence assembly we determined the "reptarenavirome" of each clutch, yielding several nearly complete L and S segments of multiple reptarenaviruses. We further confirmed vertical transmission of the co-infecting reptarenaviruses by species-specific RT-PCR from samples of parental animals and offspring. Curiously, not all offspring obtained the full parental "reptarenavirome". We extended our findings by an in vitro approach; cell cultures derived from embryonal samples rapidly developed IB and promoted replication of some or all parental viruses. In the tissues of embryos and perinatal abortions, viral antigen was sometimes detected, but IB were consistently seen only in the juvenile snakes from the age of 2 mo onwards. In addition to demonstrating vertical transmission of multiple species, our results also indicate that reptarenavirus infection induces BIBD over time in the offspring.

Experimental transmission of Zika virus by mosquitoes from central Europe.

Mosquitoes collected in Germany in 2016, including Culex pipiens pipiens biotype pipiens, Culex torrentium and Aedes albopictus, as well as Culex pipiens pipiens biotype molestus (in colony since 2011) were experimentally infected with Zika virus (ZIKV) at 18 °C or 27 °C. None of the Culex taxa showed vector competence for ZIKV. In contrast, Aedes albopictus were susceptible for ZIKV but only at 27 °C, with transmission rates similar to an Aedes aegypti laboratory colony tested in parallel.

Intertypic recombination of human parechovirus 4 isolated from infants with sepsis-like disease.

Human parechoviruses (HPeVs) (family Picornaviridae), are common pathogens in young children. Despite their high prevalence, research on their genetic identity, diversity and evolution have remained scarce.

Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism.

An epidemic of Zika virus (ZIKV) infection associated with congenital abnormalities such as microcephaly, is ongoing in the Americas and the Pacific. Currently there are no approved therapies to treat this emerging viral disease. Here, we tested three cell-directed broad-spectrum antiviral compounds against ZIKV replication using human retinal pigment epithelial (RPE) cells and a low-passage ZIKV strain isolated from fetal brain. We found that obatoclax, SaliPhe, and gemcitabine inhibited ZIKV infections at noncytotoxic concentrations. Moreover, all three compounds prevented production of viral RNA and proteins as well as activation of cellular caspase 8, 3 and 7. However, these compounds differentially affected ZIKV-mediated transcription, translation and posttranslational modifications of cellular factors as well as metabolic pathways indicating that these agents possess different mechanisms of action. Interestingly, combination of obatoclax and SaliPhe at nanomolar concentrations had a synergistic effect against ZIKV infection. Thus, our results provided the foundation for development of broad-spectrum cell-directed antivirals or their combinations for treatment of ZIKV and other emerging viral diseases.

Production, purification and immunogenicity of recombinant Ebola virus proteins - A comparison of Freund's adjuvant and adjuvant system 03.

There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells.

Experimental Infection of Mink Enforces the Role of Arcanobacterium phocae as Causative Agent of Fur Animal Epidemic Necrotic Pyoderma (FENP).

Fur Animal Epidemic Necrotic Pyoderma (FENP) is a severe, often lethal infectious disease affecting all three fur animal species: mink (Neovision vision), foxes (Vulpes lagopus) and finnraccoons (Nyctereutes procyonoides). Previous studies showed an association between Arcanobacterium phocae and FENP. An experimental infection was conducted to confirm the ability of A. phocae to infect mink either alone or concurrently with a novel Streptococcus sp. found together with A. phocae in many cases of FENP. Different inoculation methods were tested to study possible routes of transmission. Typical signs, and gross- and histopathological findings for FENP were detected when naïve mink were infected with the tissue extract of mink with FENP, using a subcutaneous/ intradermal infection route. Edema, hemorrhage, necrosis and pus formation were detected in the infection site. A pure culture preparation of A. phocae alone or concurrently with the novel Streptococcus sp. caused severe acute signs of lethargy, apathy and anorexia and even mortality. The histopathological findings were similar to those found in naturally occurring cases of FENP. In contrast, the perorally infected mink presented no clinical signs nor any gross- or histopathological lesions. This study showed that A. phocae is able to cause FENP. The study also indicated that predisposing factors such as the environment, the general condition of the animals, temperature and skin trauma contribute to the development of the disease.

Food limitation constrains host immune responses to nematode infections.

Trade-offs in the allocation of finite-energy resources among immunological defences and other physiological processes are believed to influence infection risk and disease severity in food-limited wildlife populations. However, this prediction has received little experimental investigation. Here we test the hypothesis that food limitation impairs the ability of wild field voles (Microtus agrestis) to mount an immune response against parasite infections. We conducted a replicated experiment on vole populations maintained in large outdoor enclosures during boreal winter, using food supplementation and anthelmintic treatment of intestinal nematodes. Innate immune responses against intestinal parasite infections were compared between food-supplemented and non-supplemented voles. Voles with high food availability mounted stronger immune responses against intestinal nematode infections than food-limited voles. No food effects were seen in immune responses to intracellular coccidian parasites, possibly owing to their ability to avoid activation of innate immune pathways. Our findings demonstrate that food availability constrains vole immune responses against nematode infections, and support the concept that spatio-temporal heterogeneity in food availability creates variation in infectious disease susceptibility.

Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor.

Immunoglobulins (Igs), the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD), an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors.

Mapping of human B-cell epitopes of Sindbis virus.

Mosquito-transmitted Sindbis virus (SINV) causes fever, skin lesions and musculoskeletal symptoms if transmitted to man. SINV is the prototype virus of genus Alphavirus, which includes other arthritogenic viruses such as chikungunya virus (CHIKV) and Ross River virus (RRV) that cause large epidemics with a considerable public health burden. Until now the human B-cell epitopes have been studied for CHIKV and RRV, but not for SINV. To identify the B-cell epitopes in SINV-infection, we synthetised a library of linear 18-mer peptides covering the structural polyprotein of SINV, and probed it with SINV IgG-positive and IgG-negative serum pools. By comparing the binding profiles of the pools, we identified 15 peptides that were strongly reactive only with the SINV IgG-positive pools. We then utilized alanine scanning and individual (n=22) patient sera to further narrow the number of common B-cell epitopes to six. These epitopes locate to the capsid, E2, E1 and to a region in PE2 (uncleaved E3-E2), which may only be present in immature virions. By sequence comparison, we observed that one of the capsid protein epitopes shares six identical amino acids with macrophage migration inhibitory factor (MIF) receptor, which is linked to inflammatory diseases and to molecular pathology of alphaviral arthritides. Our results add to the current understanding on SINV disease and raise questions of a potential role of uncleaved PE2 and the MIF receptor (CD74) mimotope in human SINV infection.

Infection with Possible Novel Parapoxvirus in Horse, Finland, 2013.

A horse in Finland exhibited generalized granulomatous inflammation and severe proliferative dermatitis. After euthanization, we detected poxvirus DNA from a skin lesion sample. The virus sequence grouped with parapoxviruses, closely resembling a novel poxvirus detected in humans in the United States after horse contact. Our findings indicate horses may be a reservoir for zoonotic parapoxvirus.

Prevalence estimation of tick-borne encephalitis virus (TBEV) antibodies in dogs from Finland using novel dog anti-TBEV IgG MAb-capture and IgG immunofluorescence assays based on recombinant TBEV subviral particles.

Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans.

Acute Human Inkoo and Chatanga Virus Infections, Finland.

Inkoo virus (INKV) and Chatanga virus (CHATV), which are circulating in Finland, are mosquitoborne California serogroup orthobunyaviruses that have a high seroprevalence among humans. Worldwide, INKV infection has been poorly described, and CHATV infection has been unknown. Using serum samples collected in Finland from 7,961 patients suspected of having viral neurologic disease or Puumala virus infection during the summers of 2001-2013, we analyzed the samples to detect California serogroup infections. IgM seropositivity revealed 17 acute infections, and cross-neutralization tests confirmed presence of INKV or CHATV infections. All children (<16 years of age) with INKV infection were hospitalized; adults were outpatients with mild disease, except for 1 who was hospitalized with CHATV infection. Symptoms included fever, influenza-like illness, nausea or vomiting, disorientation, nuchal rigidity, headache, drowsiness, and seizures. Although many INKV and CHATV infections appear to be subclinical, these viruses can cause more severe disease, especially in children.

Erratum: Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles.

Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.

The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated.

Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis.

Sindbis virus (SINV; family Togaviridae, genus Alphavirus) is an enveloped RNA virus widely distributed in Eurasia, Africa, Oceania and Australia. SINV is transmitted among its natural bird hosts via mosquitoes. Human disease caused by SINV infection has been reported mainly in South Africa and in Northern Europe. Vector mosquito abundance affects the annual incidence of SINV infections with occasional outbreaks of up to 1500 patients. Symptoms include fever, malaise, rash and musculoskeletal pain. In a significant portion of patients the debilitating musculoskeletal symptoms persist for years. Chronic disease after SINV infection shares many features with autoimmune diseases. Currently there is no specific treatment available. Recently SINV infections have been detected outside the previously known distribution range. In this article we will summarize the current knowledge on epidemiology, clinical disease and pathogenesis of SINV infection in man. Copyright © 2016 John Wiley & Sons, Ltd.


Moose, Alces alces (Artiodactyla: Cervidae) in Finland are heavily infested with deer keds, Lipoptena cervi (Diptera: Hippoboschidae). The deer ked, which carries species of the genus Bartonella, has been proposed as a vector for the transmission of bartonellae to animals and humans. Previously, bartonella DNA was found in deer keds as well as in moose blood collected in Finland. We investigated the prevalence and molecular diversity of Bartonella spp. infection from blood samples collected from free-ranging moose. Given that the deer ked is not present in northernmost Finland, we also investigated whether there were geographic differences in the prevalence of bartonella infection in moose. The overall prevalence of bartonella infection was 72.9% (108/148). Geographically, the prevalence was highest in the south (90.6%) and lowest in the north (55.9%). At least two species of bartonellae were identified by multilocus sequence analysis. Based on logistic regression analysis, there was no significant association between bartonella infection and either age or sex; however, moose from outside the deer ked zone were significantly less likely to be infected (P<0.015) than were moose hunted within the deer ked zone.

Seroprevalence and Risk Factors of Inkoo Virus in Northern Sweden.

The mosquito-borne Inkoo virus (INKV) is a member of the California serogroup in the family Bunyaviridae, genus Orthobunyavirus These viruses are associated with fever and encephalitis, although INKV infections are not usually reported and the incidence is largely unknown. The aim of the study was to determine the prevalence of anti-INKV antibodies and associated risk factors in humans living in northern Sweden. Seroprevalence was investigated using the World Health Organization Monitoring of Trends and Determinants in Cardiovascular Disease study, where a randomly selected population aged between 25 and 74 years (N = 1,607) was invited to participate. The presence of anti-INKV IgG antibodies was determined by immunofluorescence assay. Seropositivity for anti-INKV was significantly higher in men (46.9%) than in women (34.8%; P < 0.001). In women, but not in men, the prevalence increased somewhat with age (P = 0.06). The peak in seropositivity was 45-54 years for men and 55-64 years for women. Living in rural areas was associated with a higher seroprevalence. In conclusion, the prevalence of anti-INKV antibodies was high in northern Sweden and was associated with male sex, older age, and rural living. The age distribution indicates exposure to INKV at a relatively early age. These findings will be important for future epidemiological and clinical investigations of this relatively unknown mosquito-borne virus.

Vaccinia virus-free rescue of fluorescent replication-defective vesicular stomatitis virus and pseudotyping with Puumala virus glycoproteins for use in neutralization tests.

Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 105-108, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (rs = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.

Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles.

Understanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite for predicting and preventing human disease epidemics. The human infection risk of Puumala hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations exhibiting a 3-year density cycle. Infected bank voles were most abundant in mid-winter months during years of increasing or peak host density. Prevalence of PUUV infection in bank voles exhibited a regular, seasonal pattern reflecting the annual population turnover and accumulation of infections within each year cohort. In autumn, the PUUV transmission rate tracked increasing host abundance, suggesting a density-dependent transmission. However, prevalence of PUUV infection was similar during the increase and peak years of the density cycle despite a twofold difference in host density. This may result from the high proportion of individuals carrying maternal antibodies constraining transmission during the cycle peak years. Our exceptionally intensive and long-term dataset provides a solid basis on which to develop models to predict the dynamic public health threat posed by PUUV in northern Europe.

The Presence and Seroprevalence of Arthropod-Borne Viruses in Nasiriyah Governorate, Southern Iraq: A Cross-Sectional Study.

The knowledge on the presence and seroprevalence of arboviruses in Iraq is fragmental. To assess the exposure of the population to arbovirus infections in southern Iraq, we conducted a serological screening of the most common arbovirus groups using immunofluorescence, hemagglutination inhibition and neutralization tests. Serum samples of 399 adult volunteers were collected in Nasiriyah, Iraq. Antibodies were detected against West Nile virus (WNV) (11.6%), sandfly-borne Sicilian virus serocomplex (18.2%), sandfly-borne Naples virus serocomplex (7.8%), Sindbis virus (1.5%), chikungunya virus (0.5%), and Tahyna virus (2.0%). The results suggest that WNV and sandfly-borne phlebovirus infections are common in southern Iraq, and these viruses should be considered as potential causative agents in patients with febrile disease and/or neurological manifestations.

Serological evidence of tick-borne encephalitis virus infection in moose and deer in Finland: sentinels for virus circulation.

The incidence of tick-borne encephalitis (TBE) in humans has increased in Finland, and the disease has emerged in new foci. These foci have been investigated to determine the circulating virus subtype, the tick host species and the ecological parameters, but countrywide epidemiological information on the distribution of TBEV has been limited.

Zika virus infection in a traveller returning from the Maldives, June 2015.

We report a Zika virus (ZIKV) infection in a patient with fever and rash after returning to Finland from Maldives, June 2015. The patient had dengue virus (DENV) IgG and IgM antibodies but pan-flavivirus RT-PCR and subsequent sequencing showed presence of ZIKV RNA in urine. Recent association of ZIKV with microcephaly highlights the need for laboratory differentiation of ZIKV from DENV infection and the circulation of ZIKV in areas outside its currently known distribution range.

Severe Ocular Cowpox in a Human, Finland.

Test based on subtype-specific μ-capture IgM immunoassay can distinguish between infections of European and Siberian subtypes of tick-borne encephalitis virus.

In many European countries (including Finland, Estonia, Latvia and Russia) two subtypes of tick-borne encephalitis virus (TBEV) occur with overlapping geographic distribution yet with apparently different severity and persistence of symptoms. However, it has not usually been possible to distinguish these infections in the laboratory, as TBEV RNA or sequences have rarely been retrieved from patients seeking medical care in the second phase of infection when the neurological symptoms occur, and serological tests have so far not been able to discriminate between the subtype-specific responses.

Siberian subtype tick-borne encephalitis virus in Ixodes ricinus in a newly emerged focus, Finland.

The first tick-borne encephalitis (TBE) cases in Kotka, Finland appeared in 2010. Altogether ten human cases have been diagnosed by 2014. Four had long-lasting sequelae. We collected 195 Ixodes ricinus ticks, nine rodents, and eleven shrews from the archipelago of Kotka in 2011. Three Siberian subtype TBE virus (TBEV) strains were isolated from the ticks and three mammals were positive for TBEV antibodies. The archipelago of Kotka is a newly emerged TBE focus of Siberian subtype TBEV circulating notably in I. ricinus. The patients had on average longer hospitalization than reported for the European subtype infection.

Surveillance of endemic foci of tick-borne encephalitis in Finland 1995-2013: evidence of emergence of new foci.

The geographical risk areas for tick-borne encephalitis (TBE) in Finland remained the same until the beginning of the 21st century, but a considerable geographical expansion has been observed in the past 10 years. In order to support public health measures, the present study describes the number of laboratory-confirmed TBE cases and laboratory tests conducted and the associated trends by hospital district, with a particular emphasis on the suspected geographical risk areas. An additional investigation was conducted on 1,957 clinical serum samples throughout the country taken from patients with neurological symptoms to screen for undiagnosed TBE cases. This study identified new TBE foci in Finland, reflecting the spread of the disease into new areas. Even in the most endemic municipalities, transmission of TBE to humans occurred in very specific and often small foci. The number of antibody tests for TBE virus more than doubled (an increase by 105%) between 2007 and 2013. Analysis of the number of tests also revealed areas in which the awareness of clinicians may be suboptimal at present. However, it appears that underdiagnosis of neuroinvasive TBE is not common.

Environmental Risk Factors of Pediatric-Onset Primary Sclerosing Cholangitis and Autoimmune Hepatitis.

The aim of this population-based observational case-control questionnaire study was to investigate the possible role of environmental risk factors associated with pediatric-onset autoimmune liver diseases.

Long-term hormonal follow-up after human Puumala hantavirus infection.

Nephropathia epidemica (NE) is a haemorrhagic fever with renal syndrome (HFRS) caused by Puumala hantavirus (PUUV). Pituitary haemorrhage and hypopituitarism may complicate recovery from acute NE.