A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Yi Zhao - Top 30 Publications

Endovascular repair of thoracic aortic dissection associated with right-sided aortic arch: report of four cases.

α-Cyperone inhibits PMA-induced EPCR shedding through PKC pathway.

α-Cyperone, a sesquiterpene compound represents 25.23% of the total oil and is the most abundant compound in C. rotundus oil. Endothelial cell protein C receptor (EPCR) is a main member in Protein C (PC) anti-coagulation system. EPCR could be shed from cell surface, and is mediated by Tumor necrosis factor-α converting enzyme (TACE). Nothing that EPCR is a marker of vascular barrier integrity in vascular inflammatory disease and takes part in systemic inflammatory disease. In this study, we investigated whether α-cyperone could inhibit EPCR shedding. To observe the effect, we investigated this issue by detection the effect of α-cyperone onPhorbol-12-myristate 13-acetate (PMA)-induced EPCR shedding in HUVECs. The cells were pretreated with α-cyperone for 12 h, and then stimulated by PMA for 1 h. The solute EPCR (sEPCR) and expression of membrane EPCR (mEPCR) were measured by ELISA and western blot. The mRNA, protein level and activity of TACE were tested by qRT-PCR, western blot and InnoZyme TACE activity assay kit. Furthermore, we measured the protein level of mitogen-activated protein kinase (MAPK) signaling and protein kinase C (PKC) pathway under this condition by western blot. The results showed that α-cyperone could suppress PMA-induced EPCR shedding through inhibiting the expression and activity of TACE. In addition, α-cyperone could inhibit PKC translocation, but not have an effect on phosphorylation of c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK) 1/2. Given these results, α-cyperone inhibits PMA-induced EPCR shedding through PKC pathway, which will provide an experimental basis for further research on α-cyperone.

Associations between serum adipocytokines and glycemic tolerance biomarkers in a rural Chinese population.

Although experimental studies have shown that adiponectin and leptin modulate glucose tolerance and insulin resistance, it remains unclear whether these adipocytokines exert similar effects in general human populations. We evaluated the associations of serum adiponectin and leptin with β-cell function and insulin resistance in a population with low obesity prevalence. A cross-sectional study of 783 rural residents, aged 25-74 years, recruited in Ningxia, China was conducted during 2008-2012. β-cell function and insulin resistance were estimated using the Homeostasis Model Assessment. Serum adiponectin and leptin were measured with ELISA. Serum adiponectin concentrations (mean ± SD) were highest in subjects with normal glucose tolerance (36.65 ± 61.13 μg/ml), intermediate in those with impaired fasting glucose (25.92 ± 34.48 μg/ml), and lowest in those with diabetes (15.08 ± 12.14 μg/ml) (p = 0.001). A similar pattern of differences was found for β-cell function, whereas opposite results were observed for insulin resistance and blood glucose. After adjustment for confounders including metabolic syndrome components, serum adiponectin (μg/ml) was inversely associated with β-cell function (%β) [β (95% CI): -7.57 (-12.33, -2.81)] and insulin resistance (100/%S) [β (95% CI): -0.21 (-0.33, -0.09)]. A significant inverse association also existed between serum leptin and β-cell function, but serum leptin was not significantly associated with insulin resistance. The present study suggests that adiponectin and leptin play a role in the development of insulin resistance and diabetes independent of metabolic syndrome.

Through-space Förster-type energy transfer in isostructural zirconium and hafnium-based metal-organic layers.

Quantitative determination of energy transfer in isostructural Zr and Hf metal-organic layers (MOLs) by measuring fluorescence quenching upon doping the MOLs with a quencher or modifying the MOLs with a coumarin-343 dye revealed nearly identical energy transfer rates of the two MOLs, consistent with the dominance of through-space Förster-type energy transfer.

An underappreciated hotspot of antibiotic resistance: The groundwater near the municipal solid waste landfill.

Landfills are so far the most common practice for the disposals of municipal solid waste (MSW) worldwide. Since MSW landfill receives miscellaneous wastes, including unused/expired antibiotics and bioactive wastes, it gradually becomes a huge potential bioreactor for breeding antibiotic resistance. Antibiotic resistance genes (ARGs) in landfill can flow to the environment through leakage of landfill leachate and pose a risk to public health. Using high throughput quantitative Polymerase Chain Reaction (HT-qPCR), we investigated the prevalence, diversity of ARGs and its association with various mobile genetic elements (MGEs) in MSW landfill groundwater. Totally 171 unique ARGs (belonging to 9 ARG types, encompassing 3 major resistance mechanisms) and 8 MGEs (6 transposase genes, and 2 integron-integrase genes) were identified. The normalized abundance of ARG was ranging from 0.24 to 5.66 copies/cell with multidrug, beta-lactams and tetracycline resistance genes being the most abundant ARG types. The co-occurrence pattern and significant correlation between MGEs and ARGs, indicated that MGEs may play an important role in the persistence and proliferation of ARGs. A Mantel test and Procrustes analysis suggested that ARG profiles were significantly correlated with bacterial community. Variation partitioning analysis (VPA) further demonstrated that bacterial community shifts contribute 65.8% of the total ARG variations. Additionally network analysis revealed that 15 bacterial taxa at family level might be the potential hosts of ARGs. These findings provide evidence that groundwater near MSW landfill is an underappreciated hotspot of antibiotic resistance and contribute to the spread of ARGs via the flowing contaminated groundwater.

Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate.

A magnetic cobalt ferrite (CoFe2O4) catalyst was prepared by sol-gel method, and characterized by a X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) and hysteresis loop method. The chemical states on surface of the fresh and spent catalysts were analyzed by a X-ray photoelectron spectroscopy (XPS). The experiments of elemental mercury (Hg(0)) removal from flue gas were conducted in a laboratory scale using activated peroxymonosulfate (PMS) catalyzed by CoFe2O4, and the effects of the dosage of catalyst, the concentration of PMS, initial solution pH and reaction temperature on mercury removal efficiency were investigated. The average removal efficiency of Hg(0) could maintain steady at 85% in 45min when the concentrations of CoFe2O4 and PMS were 0.288g/L and 3.5mmol/l respectively, solution pH was 7 and reaction temperature was 55°C. In order to speculate the reaction mechanism, ethyl alcohol and isopropyl alcohol were used as the quenching agents to indirectly prove the existence of SO4(-) and OH.

Progress and future prospect of in vitro spermatogenesis.

Infertility has become a major health issue in the world. It affects the social life of couples and of all infertility cases; approximately 40-50% is due to "male factor" infertility. Male infertility could be due to genetic factors, environment or due to gonadotoxic treatment. Developments in reproductive biotechnology have made it possible to rescue fertility and uphold biological fatherhood. In vitro production of haploid male germ cell is a powerful tool, not only for the treatment of infertility including oligozoospermic or azoospermic patient, but also for the fertility preservation in pre-pubertal boys whose gonadal function is threatened by gonadotoxic therapies. Genomic editing of in-vitro cultured germ cells could also potentially cure flaws in spermatogenesis due to genomic mutation. Furthermore, this ex-vivo maturation technique with genomic editing may be used to prevent paternal transmission of genomic diseases. Here, we summarize the historical progress of in vitro spermatogenesis research by using organ and cell culture techniques and the future clinical application of in vitro spermatogenesis.

Risk Factors of Stomal Recurrence After Laryngectomy: A Systematic Review and Meta-analysis.

We wished to investigate the risk factors for stoma recurrence following laryngectomy.

Epigallocatechin-3-gallate promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells via PTEN.

Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia (AML) in which the hybrid protein promyelocytic leukemia protein/retinoic acid receptor α (PML/RARα) acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid cell mutation. We aimed at explaining the molecular mechanism of green tea polyphenol epigallocatechin-3-gallate (EGCG) enhancement of ATRA-induced APL cell line differentiation. Tumor suppressor phosphatase and tensin homolog (PTEN) was found downregulated in NB4 cells and rescued by proteases inhibitor MG132. A significant increase of PTEN levels was found in NB4, HL-60 and THP-1 cells upon ATRA combined with EGCG treatment, paralleled by increased myeloid differentiation marker CD11b. EGCG in synergy with ATRA promote degradation of PML/RARα and restores PML expression, and increase the level of nuclear PTEN. Pretreatment of PTEN inhibitor SF1670 enhances the PI3K signaling pathway and represses NB4 cell differentiation. Moreover, the induction of PTEN attenuated the Akt phosphorylation levels, pretreatment of PI3K inhibitor LY294002 in NB4 cells, significantly augmented the cell differentiation and increased the expression of PTEN. These results therefore indicate that EGCG targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemia cells in combination with ATRA via PTEN.

The dissociation and recombination rates of CH4 through the Ni(111) surface: The effect of lattice motion.

Methane dissociation is a prototypical system for the study of surface reaction dynamics. The dissociation and recombination rates of CH4 through the Ni(111) surface are calculated by using the quantum instanton method with an analytical potential energy surface. The Ni(111) lattice is treated rigidly, classically, and quantum mechanically so as to reveal the effect of lattice motion. The results demonstrate that it is the lateral displacements rather than the upward and downward movements of the surface nickel atoms that affect the rates a lot. Compared with the rigid lattice, the classical relaxation of the lattice can increase the rates by lowering the free energy barriers. For instance, at 300 K, the dissociation and recombination rates with the classical lattice exceed the ones with the rigid lattice by 6 and 10 orders of magnitude, respectively. Compared with the classical lattice, the quantum delocalization rather than the zero-point energy of the Ni atoms further enhances the rates by widening the reaction path. For instance, the dissociation rate with the quantum lattice is about 10 times larger than that with the classical lattice at 300 K. On the rigid lattice, due to the zero-point energy difference between CH4 and CD4, the kinetic isotope effects are larger than 1 for the dissociation process, while they are smaller than 1 for the recombination process. The increasing kinetic isotope effect with decreasing temperature demonstrates that the quantum tunneling effect is remarkable for the dissociation process.

Reconstruction of acetabular posterior wall fractures with extension to the roof using dual arc-shaped plates: A case report.

Anatomical reduction and rigid fixation of acetabular posterior wall fractures extending to the acetabular roof proves challenging because of the big bony fragment and muscular obstruction to accessing this region. This report describes a novel reconstructive technique in a patient with an acetabular posterior wall fracture involving the acetabular roof. Both the standard Kocher-Langenbeck approach and a greater trochanter osteotomy technique were used. Following anatomical reduction, a dual arc-shaped reconstruction plate technique was employed to achieve rigid fixation. The patient recovered with satisfactory function at the injured hip. We recommend this dual arc-shaped reconstruction plate technique for the treatment of acetabular posterior wall fractures extending to the acetabular roof in clinical practice.

Blood Oxygenation Level-Dependent Functional Magnetic Resonance Imaging in Early Days: Correlation between Passive Activation and Motor Recovery After Unilateral Striatocapsular Cerebral Infarction.

This study aimed to investigate the correlation between the functional magnetic resonance imaging (fMRI) pattern and the motor function recovery of an affected limb during the passive movement of the affected limb at an early stage of the striatocapsular infarction (SCI).

Biofunctional Polymer-Lipid Hybrid High-Density Lipoprotein-Mimicking Nanoparticles Loading Anti-miR155 for Combined Antiatherogenic Effects on Macrophages.

A biofunctional polymer-lipid hybrid high-density lipoprotein-mimicking nanoparticle (HNP) loading anti-miR155 was constructed for combined antiatherogenic effects on macrophages. The HNP consisted of an anti-miR155 core condensed by acid-labile polyethylenimine (acid-labile PEI) polymers and a lipid bilayer coat that was decorated with apolipoprotein A-1, termed acid-labile PEI/HNP. The acid-labile PEI was synthesized with low-molecular-weight PEI and glutaraldehyde to reduce the cytotoxicity and facilitate nucleic acids escaping from acidic endolysosomes. The increased silencing efficiency of acid-labile PEI/HNP was ascribed to the clathrin-mediated endocytosis and successful endolysosomal escape. Decreased intracellular reactive oxygen species production and DiI-oxLDL uptake revealed the antioxidant activities of both anti-miR155 and HNP. Cholesterol efflux assay indicated the potential of HNP in reverse cholesterol transport. Collectively, the acid-labile PEI/HNP not only realized the efficacy of anti-miR155 in macrophages but also exerted the antiatherosclerotic biofunction of HNP.

β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling.

Simultaneous hyperactivation of Wnt and antioxidant response (AR) are often observed during oncogenesis. However, it remains unclear how the β-catenin-driven Wnt and the Nrf2-driven AR mutually regulate each other. The situation is compounded because many players in these two pathways are redox sensors, rendering bolus redox signal-dosing methods uninformative. Herein we examine the ramifications of single-protein target-specific AR upregulation in various knockdown lines. Our data document that Nrf2/AR strongly inhibits β-catenin/Wnt. The magnitude and mechanism of this negative regulation are dependent on the direct interaction between β-catenin N terminus and β-TrCP1 (an antagonist of both Nrf2 and β-catenin), and independent of binding between Nrf2 and β-TrCP1. Intriguingly, β-catenin positively regulates AR. Because AR is a negative regulator of Wnt regardless of β-catenin N terminus, this switch of function is likely sufficient to establish a new Wnt/AR equilibrium during tumorigenesis.

The Inheritance Angle: A Determinant for the Number of Members in the Substituted Cucurbitnuril Family.

Two new glycoluril diethers have been prepared, bearing strained cyclobutene and cyclobutane rings at the fused junction of the two imidazolidinone rings. The wide angle of the concave face of the cyclobutano derivative enabled the synthesis of cyclobutanocucurbit[5-8]uril, the largest member being the most significant achievement. A limited binding affinity study compared the new substituted family to classical cucurbit[5-8]uril. Surprisingly lower affinities were found, except for cyclobutanocucurbit[6]uril, which was 3.3-fold higher.

Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease.

We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10(-4)) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10(-8)) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10(-10), odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10(-10), OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10(-14), OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.

Screening for TMEM230 mutations in young-onset Parkinson's disease.

TMEM230 gene mutations have been reported to be linked with Parkinson's disease (PD) recently. To investigate the prevalence of this gene in southeastern Chinese patients with PD, whole exome sequencing was performed in young-onset and familial PD patients and healthy controls in our Asian population. One heterozygous missense p.Phe121Ser mutation was detected in a healthy 76-year-old control subject and no other TMEM230 mutations were found in PD patients and controls. These data suggest that TMEM230 mutation might be a rare cause of Chinese familial and sporadic PD patients and a larger sample size will be needed to evaluate the association of TMEM230 polymorphic variants with PD.

Asymmetrical Polymer Vesicles for Drug delivery and Other Applications.

Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

Role of fungi in chronic rhinosinusitis through ITS sequencing.

Next-generation sequencing increases the sensitivity of fungal identification and may improve our understanding of the role that fungi play in sinus health and disease, which remains incompletely understood. We sequenced the internal transcribed spacer (ITS) amplicon to explore the role of the mycobiome in chronic rhinosinusitis (CRS).

Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important?

The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.

Combined Effects of Elevated pCO2 and Warming Facilitate Cyanophage Infections.

Elevated pCO2 and warming are generally expected to influence cyanobacterial growth, and may promote the formation of blooms. Yet, both climate change factors may also influence cyanobacterial mortality by favoring pathogens, such as viruses, which will depend on the ability of the host to adapt. To test this hypothesis, we grew Plectonema boryanum IU597 under two temperature (25 and 29°C) and two pCO2 (400 and 800 μatm) conditions for 1 year, after which all treatments were re-exposed to control conditions for a period of 3 weeks. At several time points during the 1 year period, and upon re-exposure, we measured various infection characteristics of it associated cyanophage PP, including the burst size, latent period, lytic cycle and the efficiency of plaquing (EOP). As expected, elevated pCO2 promoted growth of P. boryanum equally over the 1 year period, but warming did not. Burst size increased in the warm treatment, but decreased in both the elevated pCO2 and combined treatment. The latent period and lytic cycle both became shorter in the elevated pCO2 and higher temperature treatment, and were further reduced by the combined effect of both factors. Efficiency of plaquing (EOP) decreased in the elevated pCO2 treatment, increased in the warm treatment, and increased even stronger in the combined treatment. These findings indicate that elevated pCO2 enhanced the effect of warming, thereby further promoting the virus infection rate. The re-exposure experiments demonstrate adaptation of the host leading to higher biomass build-up with elevated pCO2 over the experimental period, and lower performance upon re-exposure to control conditions. Similarly, virus burst size and EOP increased when given warm adapted host, but were lower as compared to the control when the host was re-exposed to control conditions. Our results demonstrate that adaptation but particularly physiological acclimation to climate change conditions favored viral infections, while limited host plasticity and slow adaptation after re-exposure to control conditions impeded host biomass build-up and viral infections.

A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes.

To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy)3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C(2)')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy)3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A(-1), 36.3 lm W(-1), and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy)3-based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A(-1), 22.1 lm W(-1), and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m(-2). The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching, facilitating charge-carrier injection/transport, and improving the amorphous stability of iridium(III)-based phosphorescent emitters.

99Tc-MDP-induced human osteoblast proliferation, differentiation and expression of osteoprotegerin.

The aim of the present study was to examine the influence of technetium methylenediphosphonate (99Tc-MDP) on the proliferation and differentiation of human osteoblasts. Human iliac cancellous bone was isolated and cultured with either 99Tc‑MDP, β fibroblast growth factor (as a positive control) or medium only (as a negative control). Proliferation was assessed by direct cell counting, CCK‑8 assay and bromodeoxyuridine staining. The cell cycle and rate of apoptosis was assessed by propidium iodide staining and flow cytometry. Alkaline phosphatase (ALP) activity was assessed by the p‑nitrophenyl phosphate method and mineralized nodules were stained with Alizarin Red. Expression of osteocalcin (OCN) and bone morphogenetic protein‑2 (BMP‑2) was assessed by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), and expression levels of osteoprotegerin (OPG) and receptor activator of NF‑κB ligand (RANKL) were assessed by RT‑qPCR and ELISA. Isolated human osteoblasts stained positively for ALP and developed mineralized nodules. Treatment with 10‑5‑10‑10 M 99Tc‑MDP enhanced proliferation and 48 h incubation with 10‑8 M 99Tc‑MDP increased the proportion of cells in S‑phase, decreased the proportion in G0/G1 phase, and increased the cell proliferation index. The rate of apoptosis also increased, but the increase was not significant. Cells incubated with 10‑6‑10‑9 M 99Tc‑MDP for 3‑9 days exhibited increased ALP activity and mineralized nodule development. 10‑8 M 99Tc‑MDP increased BMP‑2 and OPG expression levels and OPG secretion, but OCN mRNA expression levels and RANKL secretion were not significantly altered at 72 h. 99Tc‑MDP treatment induced osteoblast proliferation and differentiation without affecting apoptosis. These findings provide proof of concept for the future use of 99Tc‑MDP in the treatment of bone‑destructive diseases.

Serum Human Beta-Defensin-2 Is a Possible Biomarker for Monitoring Response to JAK Inhibitor in Psoriasis Patients.

To analyse the correlation between serum human beta-defensin-2 (hBD-2) levels and response to JAK inhibitor in psoriasis.

Using the NONCODE Database Resource.

NONCODE is a comprehensive database that aims to present the most complete collection and annotation of non-coding RNAs, especially long non-coding RNAs (lncRNA genes), and thus NONCODE is essential to modern biological and medical research. Scientists are producing a flood of new data from which new lncRNA genes and lncRNA-disease relationships are continually being identified. NONCODE assimilates such information from a wide variety of sources including published articles, RNA-seq data, micro-array data and databases on genetic variation (dbSNP) and genome-wide associations (GWAS). NONCODE organizes all this information and makes it freely available to the public via the Internet. The NONCODE protocol provides step-by-step instructions on how to browse and search lncRNA information such as sequence, expression, and disease relationships, how to use the tools for functional prediction, species conservation assays, blast analysis, identifier conversion, and, finally, how to submit sequences to identify lncRNA genes. As of Dec 2016, NONCODE has cataloged 487,851 lncRNA genes sequenced from 16 species. © 2017 by John Wiley & Sons, Inc.

Protein network construction using reverse phase protein array data.

In this paper, we introduce a novel computational method for constructing protein networks based on reverse phase protein array (RPPA) data to identify complex patterns in protein signaling. The method is applied to phosphoproteomic profiles of basal expression and activation/phosphorylation of 76 key signaling proteins in three breast cancer cell lines (MCF7, LCC1, and LCC9). Temporal RPPA data are acquired at 48h, 96h, and 144h after knocking down four genes in separate experiments. These genes are selected from a previous study as important determinants for breast cancer survival. Interaction networks are constructed by analyzing the expression levels of protein pairs using a multivariate analysis of variance model. A new scoring criterion is introduced to determine relevant protein pairs. Through a network topology based analysis, we search for wiring patterns to identify key proteins that are associated with significant changes in expression levels across various experimental conditions.

Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting.

The inoculum containing four cellulolytic thermophilic actinomycetes was screened from compost samples, and was inoculated into co-composting during different inoculation phases. The effect of different inoculation phases on cellulose degradation, humic substances formation and the relationship between inoculation and physical-chemical parameters was determined. The results revealed that inoculation at different phases of composting improved cellulase activities, accelerated the degradation of cellulose, increased the content of humic substances and influenced the structure of actinomycetic community, but there were significant differences between different inoculation phases. Redundancy analysis showed that the different inoculation phases had different impacts on the relationship between exogenous actinobacteria and physical-chemical parameters. Therefore, based on the promoting effort of inoculation in thermophilic phase of composting for the formation of humic substances, we suggested an optimized inoculation strategy to increase the content of humic substances, alleviate CO2 emission during composting.

C1-C2 alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China.

We measured low molar-mass alkyl aminiums (methylaminium, dimethylaminium, ethylaminium and diethylaminium) in urban aerosols in the Yangtze River Delta region of eastern China in August 2014 and from November 2015 to May 2016. After examining artifact formation on sample filters, methylaminium, dimethylaminium and ethylaminium concentrations were quantified. The three C1-C2 aminiums exhibited a unimodal size distribution that maximized between 0.56 and 1.0 μm. Their concentrations in PM2.5 were 5.7 ± 3.2 ng m(-3), 7.9 ± 5.4 ng m(-3) and 20.3 ± 16.6 ng m(-3), respectively, with higher concentrations during the daytime and in warm seasons. On new particle growth days, amine uptake to particles larger than 56 nm was barely enhanced. The molar ratios of individual aminium/NH4(+) in PM2.5 were on the order of 10(-4) and 10(-3). Aminiums were thus far less to out-compete ammonium (NH4(+)) in neutralizing acidic species in particle sizes down to 56 nm. Abundant nitrate (NO3(-)/SO4(2-) molar ratio = ∼3) and its correlation to methylaminium and ethylaminium implied that nitrate might be more important aminium salt than sulfate in urban aerosols of this area. Direct measurement of particle-phase amine emission from coal and biomass burning showed that coal burning is an important atmospheric amine source, considering coal burning is top-ranked particulate matter source in China.

Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.

Development of high-fidelity three-dimensional (3D) models to recapitulate the tumor microenvironment is essential for studying tumor biology and discovering anticancer drugs. Here we report a method to engineer the 3D microenvironment of human tumors, by encapsulating cancer cells in the core of microcapsules with a hydrogel shell for miniaturized 3D culture to obtain avascular microtumors first. The microtumors are then used as the building blocks for assembling with endothelial cells and other stromal cells to create macroscale 3D vascularized tumor. Cells in the engineered 3D microenvironment can yield significantly larger tumors in vivo than 2D-cultured cancer cells. Furthermore, the 3D vascularized tumors are 4.7 and 139.5 times more resistant to doxorubicin hydrochloride (a commonly used chemotherapy drug) than avascular microtumors and 2D-cultured cancer cells, respectively. Moreover, this high drug resistance of the 3D vascularized tumors can be overcome by using nanoparticle-mediated drug delivery. The high-fidelity 3D tumor model may be valuable for studying the effect of microenvironment on tumor progression, invasion, and metastasis and for developing effective therapeutic strategy to fight against cancer.

Supercapacitor Electrodes with Remarkable Specific Capacitance Converted from Hybrid Graphene Oxide/NaCl/Urea Films.

A novel approach to improve the specific capacitance of reduced graphene oxide (rGO) films is reported. We combine the aqueous dispersion of liquid-crystalline GO incorporating salt and urea with a blade-coating technique to make hybrid films. After drying, stacked GO sheets mediated by solidified NaCl and urea are hydrothermally reduced, resulting in a nanoporous film consisting of rumpled N-doped rGO sheets. As a supercapacitor electrode, the film exhibits a high gravimetric specific capacitance of 425 F g(-1) and a record volumetric specific capacitance of 693 F cm(-3) at 1 A g(-1) in 1 M H2SO4 aqueous electrolyte when integrated into a symmetric cell. When using Li2SO4 aqueous electrolyte, which can extend the potential window to 1.6 V, the device exhibits high energy densities up to 35 Wh kg(-1), and high power densities up to 10(4) W kg(-1). This novel strategy to intercalate solidified chemicals into stacked GO sheets to functionalize them and prevent them from restacking provides a promising route toward supercapacitors with high specific capacitance and energy density.