A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Yu Long - Top 30 Publications

Selective enrichment of N-linked glycopeptides and glycans by using a dextran-modified hydrophilic material.

Glycosylation analysis of proteins from biological sources utilizing mass-spectrometry-based approaches is challenging due to the relatively low abundance of glycopeptides, the structural diversity of glycans as well as the co-existing matrices. In this study, a customized dextran-bonded silica-based stationary phase was introduced for selective enrichment of glycopeptides and glycans from complex biological samples. This material has exhibited superior selectivity and broader glycosylation site coverage over commercial Sepharose in glycoproteomic evaluation. Additionally, the glycomic analysis of fetuin, α1 -acid glycoprotein and human serum N-glycome also indicated the relatively higher sensitivity, selectivity and glycoform coverage of dextran-bonded silica than that of Sepharose and porous graphitized carbon. Therefore, the dextran-bonded silica is expected to make contributions in the fields of glycoproteomics and glycomics. This article is protected by copyright. All rights reserved.

Double-balloon versus single-balloon catheter for cervical ripening and labor induction: A systematic review and meta-analysis.

We searched Embase, PubMed and the Cochrane Library for randomized or quasi-randomized controlled trials to compare the use of single-balloon to double-balloon catheters. The risk ratio (RR) or mean difference (MD) with a 95% confidence interval (CI) was calculated using fixed-effects or random-effects models. Four studies involving a total of 793 pregnant women were included. There were no significant differences in the rate of cesarean (RR 1.09, 95% CI 0.86, 1.38; P = 0.48), or vaginal deliveries within 24 h (RR 0.94, 95% CI 0.82, 1.09; P = 0.42), the mean time to delivery (MD 0.39, 95% CI -0.90, 1.68 h; P = 0.55) or Bishop score improvement (MD 0.62, 95%CI -0.18, 1.42; P = 0.13) between the groups. Women who received the double-balloon catheter had a similar risk of maternal intrapartum fever and post-partum hemorrhage. Pain during ripening was only reported in one trial and was significantly higher with the double balloon, whereas pain during device insertion was measured in two trials: one reported no difference while the other reported significantly increased pain with the double balloon. The double-balloon and single-balloon (Foley) catheters had similar effectiveness and safety. The Foley catheter is significantly cheaper, widely available and accessible, has a longer history of use and remains the logical choice over the double-balloon catheter for cervical ripening.

CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression.

Angiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL) and tumor blood-vasculatures in the context of glioma progression.

Genome-scale analysis to identify prognostic markers in patients with early-stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy.

Molecular analysis is a promising source of clinically useful prognostic biomarkers. The aim of this investigation was to identify prognostic biomarkers for patients with early-stage pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy.

Three-Dimensional Noninvasive Imaging of Ventricular Arrhythmias in Patients with Premature Ventricular Contractions.

Noninvasive imaging of cardiac electrical activity promises to provide important information regarding the underlying arrhythmic substrates for successful ablation intervention and further understanding of the mechanism of such lethal disease. The aim of this study is to evaluate the performance of a novel three-dimensional (3D) cardiac activation imaging technique to noninvasively localize and image origins of focal ventricular arrhythmias in patients undergoing radio frequency ablation.

NLRC and NLRX gene family mRNA expression and prognostic value in hepatocellular carcinoma.

Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR)C and NLRX family proteins play a key role in the innate immune response. The relationship between these proteins and hepatocellular carcinoma (HCC) remains unclear. This study investigated the prognostic significance of NLRC and NLRX family protein levels in HCC patients. Data from 360 HCC patients in The Cancer Genome Atlas database and 231 patients in the Gene Expression Omnibus database were analyzed. Kaplan-Meier analysis and a Cox regression model were used to determine median survival time (MST) and overall and recurrence-free survival by calculating the hazard ratio (HR) and 95% confidence interval (CI). High NOD2 and low NLRX1 expression in tumor tissue was associated with short MST (P = 0.012 and 0.014, respectively). A joint-effects analysis of NOD2 and NLRX1 combined revealed that groups III and IV had reduced risk of death from HCC as compared to group I (adjusted P = 0.001, adjusted HR = 0.31, 95% CI = 0.16-0.61 and adjusted P = 0.043, adjusted HR = 0.63, 95%CI = 0.41-0.99, respectively). NOD2 and NLRX1 expression levels are potential prognostic markers in HCC following hepatectomy.

Localization of Origins of Premature Ventricular Contraction by Means of Convolutional Neural Network from 12-lead ECG.

This paper proposes a novel method to localize origins of premature ventricular contractions (PVCs) from 12-lead electrocardiography (ECG) using convolutional neural network (CNN) and a realistic computer heart model.

Understanding the microstructure and absorption rate of starch-based superabsorbent polymers prepared under high starch concentration.

From a microstructural view, the focus of this work was on the water absorption rate of starch-based superabsorbent polymers (starch-SAPs) prepared under high starch concentration (0.27:1w/w starch:water). The effects of starch amylose/amylopectin ratio were disclosed. The increase in amylopectin reduced the amount (CPAM) of polyacrylamide (PAM) in starch-SAPs but increased the ratio of starch carbons grafted with PAM, which eventually decreased the average length (LPAM) of PAM chains. The shorter PAM chains could reduce starch-SAP chain flexibility, thus inducing larger mass fractal gels in swollen starch-SAPs. In general, the increases in CPAM and LPAM were preferable for a higher water absorbent capacity (WAC), whereas the denser fractal gels reduced WAC. Interestingly, all starch-SAPs had a dual-phase absorption process with the first stage showing a higher rate than the second phase (k1>k2). The shorter PAM chains caused increases in k1 and k2.

First Molecular Detection of Babesia gibsoni in Dogs from Wuhan, China.

Canine piroplasmosis is a significant disease in dogs caused by Babesia and Theileria parasites. The clinical manifestations range from mild illness to serious disease depending on the parasite species and the physical condition of the infected dog. Canine piroplasmosis has been reported to be prevalent in China. However, no molecular evidence of the disease has been reported in pet dogs from Wuhan. In this study, 118 blood samples were randomly collected from pet dogs in veterinary clinics. The blood samples were subjected to both microscopic examination and reverse line blot (RLB) hybridization assays to detect piroplasm infection. Parasites were observed in 10 blood samples via microscopic examination, whereas there were 14 Babesia gibsoni-positive RLB tests. Phylogenetic analysis was performed after the 18S rRNA and ITS gene sequences from the 14 positive samples were cloned and sequenced. The results confirmed the existence of B. gibsoni in this area. This is the first molecular report of canine babesiosis in pet dogs from Wuhan, China. Pet dogs are companion animals, and the prevalence of babesiosis will be of concern in daily life. This study will help veterinarians better understand the prevalence of canine babesiosis and provide a guide for disease control in pet dogs.

Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics.

Temperature and moisture are critical factors for both the environment and living creatures. Most temperature sensors and humidity sensors are rigid. It still remains an unsolved problem to fabricate a flexible sensor that can easily detect temperature and humidity at the same time. In this work, we made a flexible multifunctional temperature and humidity sensor from graphene woven fabrics. The integrated sensor could measure temperature and humidity simultaneously. The temperature-sensing part and the humidity-sensing part were stacked in layer structure, occupying little space and showing good flexibility while exhibiting high sensitivity and very little mutual interference. The different factors that affected the sensing properties of the sensor were examined. The integrated sensor was successfully utilized in several real life application scenarios, which showed its potential for wider use in environment sensing and health monitoring.

Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation.

Bromodomain and extraterminal domain (BET) protein inhibitors are emerging as promising anticancer therapies. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor speckle-type POZ protein (SPOP) is the most frequently mutated in primary prostate cancer. Here we demonstrate that wild-type SPOP binds to and induces ubiquitination and proteasomal degradation of BET proteins (BRD2, BRD3 and BRD4) by recognizing a degron motif common among them. In contrast, prostate cancer-associated SPOP mutants show impaired binding to BET proteins, resulting in decreased proteasomal degradation and accumulation of these proteins in prostate cancer cell lines and patient specimens and causing resistance to BET inhibitors. Transcriptome and BRD4 cistrome analyses reveal enhanced expression of the GTPase RAC1 and cholesterol-biosynthesis-associated genes together with activation of AKT-mTORC1 signaling as a consequence of BRD4 stabilization. Our data show that resistance to BET inhibitors in SPOP-mutant prostate cancer can be overcome by combination with AKT inhibitors and further support the evaluation of SPOP mutations as biomarkers to guide BET-inhibitor-oriented therapy in patients with prostate cancer.

Aldehyde dehydrogenase 1 (ALDH1) isoform expression and potential clinical implications in hepatocellular carcinoma.

Hepatocellular carcinoma (HCC) is one of the most prevalent and life-threatening malignancies worldwide. There are few diagnostic and prognostic biomarkers and druggable targets for HCC. Aldehyde dehydrogenase 1 (ALDH1) is a marker of stem cells in a variety of cancers, but the mRNA levels and prognostic value of ALDH1 isoforms in HCC patients remain unknown. In the present study, gene ontology annotation of the ALDH1 family was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and the gene pathway analsis was performed using GeneMANIA software. The initial prognostic value of ALDH1 expression in 360 HCC patients was assessed using the OncoLnc database. The expression levels of ALDH1 isoforms in normal liver tissues and clinical specimens of cancer vs. normal control datasets were determined using the GTEx and Oncomine databases, respectively. We then analyzed the prognostic value of ALDH1 expression in 212 hepatitis B virus (HBV)-related HCC patients using the GEO database. We found that the ALDH1 isoform showed high aldehyde dehydrogenase activity. The ALDH1A1, ALDH1B1, and ALDH1L1 genes encoded for the ALDH1 enzyme. High ALDH1B1 expression had protective qualities in HCC patients. Moreover, HBV-related HCC patients who showed high ALDH1L1 gene expression had a better clinical outcomes. In addition, high ALDH1A1 expression was associated with a 57-month recurrence-free survival in HBV-related HCC patients. High ALDH1B1 expression was protective for HCCs with multiple nodules and high serum alpha-fetoprotein (AFP) level. Furthermore, high serum AFP levels contributed to lower ALDH1L1. ALDH1A1, ALDH1B1, and ALDH1L1, all of which were considered promising diagnostic and prognostic markers as well as potential drug targets.

Cyclophilin A Maintains Glioma-Initiating Cell Stemness by Regulating Wnt/β-Catenin Signaling.

Purpose: Glioma-initiating cells (GIC) are glioma stem-like cells that contribute to glioblastoma (GBM) development, recurrence, and resistance to chemotherapy and radiotherapy. They have recently become the focus of novel treatment strategies. Cyclophilin A (CypA) is a cytosolic protein that belongs to the peptidyl-prolyl isomerase (PPIase) family and the major intracellular target of the immunosuppressive drug cyclosporin A (CsA). In this study, we investigate the functions of CypA and its mechanism of action in GICs' development.Experimental Design: We analyzed differences in CypA expression between primary tumors and neurospheres from the GDS database, both before and after GIC differentiation. A series of experiments was conducted to investigate the role of CypA in GIC stemness, self-renewal, proliferation, radiotherapy resistance, and mechanism. We then designed glutathione S-transferase (GST) pulldown and coimmunoprecipitation assays to detect signaling activity.Results: In this study, we demonstrated that CypA promotes GIC stemness, self-renewal, proliferation, and radiotherapy resistance. Mechanistically, we found that CypA binds β-catenin and is recruited to Wnt target gene promoters. By increasing the interaction between β-catenin and TCF4, CypA enhances transcriptional activity.Conclusions: Our results demonstrate that CypA enhances GIC stemness, self-renewal, and radioresistance through Wnt/β-catenin signaling. Due to its promotive effects on GICs, CypA is a potential target for future glioma therapy. Clin Cancer Res; 23(21); 6640-9. ©2017 AACR.

Pyramidatine (Z88) Sensitizes Vincristine-Resistant Human Oral Cancer (KB/VCR) Cells to Chemotherapeutic Agents by Inhibition of P- glycoprotein.

Multi-drug resistance (MDR) to anticancer drugs remains a major impediment in cancer therapy. A major goal for scientists is to identify more effective compounds that are able to circumvent MDR and simultaneously have minimal adverse side effects. Here, we reported that Pyramidatine (Z88), a cinnamic acid-derived bisamide compound isolated from the leaves of Aglaia perviridis, had potent anti-MDR activity. The average resistant fold (RF) of Z88 is 0.09 and 0.51 in KB/VCR (vincristine-resistant human oral cancer cells) and MCF-7/ADR (adriamycin-resistant human breast adenocarcinoma) cells. A CCK-8 assay showed that Z88 could enhance the cytotoxicity of VCR toward KB/VCR cells. A FACS analysis revealed that Z88 could enhance the VCR-induced apoptosis as well as G2/M arrest in a dose-dependent manner in KB/VCR cells. Western Blot results showed that the expression levels of PARP, Bax, and Cyclin B1 all increased after treatment with 0.2 μmol/L (μM) of VCR combined with 10 μM of Z88 for 24 h in KB/VCR cells. Z88 also could enhance the accumulation of rhodamine 123. Further studies showed that Z88 could inhibit the verapamil-stimulated P- glycoprotein (P-gp) ATPase activity. Additionally, qPCR detection and western blot assays revealed that Z88 could decrease the RNA transcript level of ABCB1 and the protein expression level of P-gp. In conclusion, Z88 exerted potent anti-MDR activity in vitro and its mechanisms may be associated with dual-inhibition of the function and expression of P-gp. These findings encourage efforts todevelop more effective reversal agents to circumvent MDR.

Molecular Cloning and Characterization of Babesia orientalis Rhoptry Neck 2 BoRON2 Protein.

Babesiosis caused by Babesia orientalis is one of the most prevalent infections of water buffalo transmitted by Rhipicephalus haemaphysaloides causing a parasitic and hemolytic disease. The organelles proteins localized in apical membrane especially rhoptries neck and microneme protein form a complex called moving junction important during invasion process of parasites belonging to apicomplexan group, including Babesia species. A truncated fragment coding a 936 bps fragment was cloned in pMD-19T and subcloned into pET32 (a)+ expression vector, expressed in E. coli BL21. Purified recombinant BoRON2 was used to produce polyclonal antibody against BoRON2. Here, we identified the full sequence of gene encoding the rhoptry neck 2 protein that we named BoRON2 which is 4035 bp in full-length open reading frame without introns, encoding a polypeptide of 1345 amino acids. Western blot of rBoRON2 probed with buffalo positive serum analysis revealed a band of around 150 kDa in parasite lysates, suggesting an active involvement during invasion process. These findings most likely are constructive in perspective of ongoing research focused particularly on water buffalo babesiosis prevention and therapeutics and globally provide new information for genes comparative analysis.

Distinct prognostic values of alcohol dehydrogenase mRNA expression in pancreatic adenocarcinoma.

Alcohol dehydrogenase (ADH) isoenzymes have been reported as a potential diagnostic marker for pancreatic cancer, but their prognostic value in pancreatic cancer remains unclear. The aim of this investigation was to identify the prognostic value of ADH genes in human patients with pancreatic adenocarcinoma (PAAD).

ALDH1L1 variant rs2276724 and mRNA expression predict post-operative clinical outcomes and are associated with TP53 expression in HBV-related hepatocellular carcinoma.

Aldehyde dehydrogenase 1 family member L1 (ALDH1L1) is downregulated in hepatocellular carcinoma (HCC) tumors, and its decreased expression is associated with the poor prognosis of HCC patients. We, therefore, evaluated the effect of single nucleotide polymorphisms (SNPs) of ALDH1L1, and its mRNA expression on the survival of hepatitis B virus (HBV)‑related HCC patients and the association with tumor protein p53 (TP53) expression. ALDH1L1 SNPs in 415 HBV-related HCC patients were genotyped via direct sequencing. Expression profile chip datasets and survival information were obtained from GSE14520. The C allele (CT/CC) carriers of rs2276724 were significantly associated with a favorable prognosis [adjusted P=0.040; adjusted hazard ratio (HR)=0.725; 95% confidence interval (CI)=0.533-0.986]. Joint-effect analyses suggested that the CT/CC genotype of rs2276724 in TP53-negative patients was significantly associated with a decreased risk of death, compared to the TT genotype of rs2276724 in TP53-positive patients (adjusted P=0.037; adjusted HR=0.621; 95% CI=0.396-0.973). Furthermore, low expression of ALDH1L1 predicted a poor prognosis for the HBV-related HCC patients (adjusted P=0.04 for disease-free survival; adjusted P=0.001 for overall survival). Patients with high ALDH1L1 expression and low TP53 expression were significantly associated with a decreased risk of recurrence and death, and patients with a high TP53 expression were also significantly associated with a decreased risk of death in HBV-related HCC, compared with low ALDH1L1 and low TP53 expression. Our results suggest that ALDH1L1 may be a biomarker for predicting postoperative clinical outcomes. Moreover, ALDH1L1-rs2276724 and mRNA expression were associated with TP53 expression in HBV-related HCC patients.

OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues.

Seed-setting rate is a critical determinant of grain yield in rice (Oryza sativa L.). Rapid and healthy pollen tube growth in the style is required for high seed-setting rate. The molecular mechanisms governing this process remain largely unknown. In this study, we isolate a dominant low seed-setting rate rice mutant, sss1-D. Cellular examination results show that pollen tube growth is blocked in about half of the mutant styles. Molecular cloning and functional assays reveals that SSS1-D encodes OsCNGC13, a member of the cyclic nucleotide-gated channel family. OsCNGC13 is preferentially expressed in the pistils and its expression is dramatically reduced in the heterozygous plant, suggesting a haploinsufficiency nature for the dominant mutant phenotype. We show that OsCNGC13 is permeable to Ca2+. Consistent with this, accumulation of cytoplasmic calcium concentration ([Ca2+]cyt) is defective in the sss1-D mutant style after pollination. Further, the sss1-D mutant has altered extracellular matrix (ECM) components and delayed cell death in the style transmission tract (STT). Based on these results, we propose that OsCNGC13 acts as a novel maternal sporophytic factor required for stylar [Ca2+]cyt accumulation, ECM components modification and STT cell death, thus facilitating the penetration of pollen tube in the style for successful double fertilization and seed-setting in rice.

Genome-Wide Association Study of MKI67 Expression and its Clinical Implications in HBV-Related Hepatocellular Carcinoma in Southern China.

Hepatocellular carcinoma (HCC) is a common malignant tumor with a high rate of recurrence. Immunohistochemical analysis of the marker of proliferation Ki-67 (MKI67) is used to assess proliferation activity of HCC The regulation of MKI67 expression remains unclear in HCC This study aims to explore the association between MKI67 expression and gene variants.

Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity.

Poly(ADP-ribose) polymerases (PARPs) are ADP-ribosylating enzymes and play important roles in a variety of cellular processes. Most small-molecule PARP inhibitors developed to date have been against PARP1, a poly-ADP-ribose transferase, and suffer from poor selectivity. PARP16, a mono-ADP-ribose transferase, has recently emerged as a potential therapeutic target, but its inhibitor development has trailed behind. Here we newly characterized epigallocatechin-3-gallate (EGCG) as a potential inhibitor of PARP16. We found that EGCG was associated with PARP16 and dramatically inhibited its activity in vitro. Moreover, EGCG suppressed the ER stress-induced phosphorylation of PERK and the transcription of unfolded protein response-related genes, leading to dramatically increase of cancer cells apoptosis under ER stress conditions, which was dependent on PARP16. These findings newly characterized EGCG as a potential inhibitor of PARP16, which can enhance the ER stress-induced cancer cell apoptosis, suggesting that a combination of EGCG and ER stress-induced agents might represent a novel approach for cancer therapy or chemoprevention.

CD70, a novel target of CAR T-cell therapy for gliomas.

Cancer immunotherapy represents a promising treatment approach for malignant gliomas but is hampered by the limited number of ubiquitously expressed tumor antigens and the profoundly immunosuppressive tumor microenvironment. We identified cluster of differentiation (CD)70 as a novel immunosuppressive ligand and glioma target.

Fabrication of a graphene/C60 nanohybrid via γ-cyclodextrin host-guest chemistry for photodynamic and photothermal therapy.

The wonderful chemical structures and characteristics of low-dimensional carbon materials have exciting applications in life sciences. In the present study, we developed a facile strategy to conjugate C60 with graphene via host-guest chemistry for targeted phototherapy. A versatile carrier based on folic acid-functionalized graphene (GO-FA) and comprising γ-cyclodextrin (γ-CD) at its surface was assembled via π-π interaction, creating hybrid structures with drug storage and tumor targeting properties. This γ-CD-modified graphene (GO-FA/Py-γ-CD) is capable of hosting pristine C60 molecules for the fabrication of a GO-FA/Py-γ-CD/C60 nanohybrid. The hybridization of GO-FA, γ-CD, and C60 hinders the aggregation of C60, promotes cellular uptake, enhances light absorption, and finally demonstrates enhanced phototherapy effects of GO-FA/Py-γ-CD/C60. Under Xe lamp irradiation (2 W cm-2) for 4 min, GO-FA/Py-γ-CD/C60 simultaneously causes heating and intracellular ROS production, which further significantly reduces the cell viability to 16.2% at low content of loading (30 μg mL-1). Moreover, it represents an excellent tumor killing efficiency, better than that of the other reported graphene/C60 nanohybrids; thus, this material is suitable for applications in phototherapy of cancer.

Knockout of the Nogo-B Gene Attenuates Tumor Growth and Metastasis in Hepatocellular Carcinoma.

Human hepatocellular carcinoma (HCC) is a malignant cancer. It is a challenge to develop anti-HCC drugs due to HCC's extreme aggressiveness and with the sensitivity of the liver to show severe adverse effects. More importantly, the precise mechanisms causing HCC pathogenicity are not known. Our previous study disclosed Nogo-B as a reticulon 4 (Rtn4) family member. In the present study, we first identified that Nogo-B played a critical role in HCC progression. We found, via in vitro and in vivo assays, that Nogo-B was expressed aberrantly in primary HCC tumor tissues and immortal HCC cells but was relatively scarce in the normal liver tissues or cells. Nogo-B knockout, via the CRISPR-Cas9 technique, resulted in significant suppression of HCC cell proliferation and tumor growth. Next-generation sequencing analysis showed that Nogo-B knockout have effects on interleukin-6 (IL-6) signaling pathway. Furthermore, we observed that IL-6 induced phosphorylation of STAT3 (pSTAT3) in wild-type HCC cells, but Nogo-B knockout could reduce IL-6-induced increase of pSTAT3, supporting that Nogo-B affects HCC tumor progression possibly via regulating the IL-6/STAT3 signaling pathway. In conclusion, Nogo-B is expressed aberrantly in HCCs and plays an oncogenic role. These findings support that Nogo-B may be a novel anti-HCC therapeutic target.

Catalytic Oxidation of Chlorobenzene over MnxCe1-xO2/HZSM-5 Catalysts: A Study with Practical Implications.

Industrial-use catalysts usually encounter severe deactivation after long-term operation for catalytic oxidation of chlorinate volatile organic compounds (CVOCs), which becomes a "bottleneck" for large-scale application of catalytic combustion technology. In this work, typical acidic solid-supported catalysts of MnxCe1-xO2/HZSM-5 were investigated for the catalytic oxidation of chlorobenzene (CB). The activation energy (Ea), Brønsted and Lewis acidities, CB adsorption and activation behaviors, long-term stabilities, and surficial accumulation compounds (after aging) were studied using a range of analytical techniques, including XPS, H2-TPR, pyridine-IR, DRIFT, and O2-TP-Ms. Experimental results revealed that the Brønsted/Lewis (B/L) ratio of MnxCe1-xO2/HZSM-5 catalysts could be adjusted by ion exchange of H• (in HZSM-5) with Mnn+ (where the exchange with Ce4+ did not distinctly affect the acidity); the long-term aged catalysts could accumulate ca. 14 organic compounds at surface, including highly toxic tetrachloromethane, trichloroethylene, tetrachloroethylene, o-dichlorobenzene, etc.; high humid operational environment could ensure a stable performance for MnxCe1-xO2/HZSM-5 catalysts; this was due to the effective removal of Cl• and coke accumulations by H2O washing, and the distinct increase of Lewis acidity by the interaction of H2O with HZSM-5. This work gives an in-depth view into the CB oxidation over acidic solid-supported catalysts and could provide practical guidelines for the rational design of reliable catalysts for industrial applications.

Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM.

Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals.

This report presents the fabrication and pressure-driven processing of heterostructural nanocrystal superlattices (HNC-SLs) self-assembled from quantum-dot-Au (QD-Au) satellite-type HNCs. In situ small/wide-angle X-ray scattering and electron microscopic measurements showed that the HNC-SLs underwent structural transformation at both atomic- and mesoscales during the pressure processing. Upon deviatoric stress-driven orientational migration, the intraparticle coalescence of Au satellites at QD surfaces transforms individual HNCs into heterodimers, whereas the interparticle fusion drives assembled HNCs into ordered heterorod arrays. These results demonstrate high-pressure-processing as a clean and fast means for conversion of HNCs into novel heteromaterials that are difficult to achieve through conventional synthetic routes.

Prognostic value of Notch receptors in postsurgical patients with hepatitis B virus-related hepatocellular carcinoma.

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies and a major cause of cancer involved death worldwide. Prognosis remains poor because of high recurrence rates and lack of effective relapse prevention strategies. Notch pathway plays an important role in tumor progression and metastasis, and it is associated with the prognosis of cancer. A total of 465 hepatitis B virus (HBV)-related HCC patients who underwent surgery were enrolled. Single nucleotide polymorphisms (SNP) of Notch pathway receptors were genotyped using Sanger DNA sequencing. Kaplan-Meier curves and the Cox proportional hazards regression model were adopted to analyze the association of polymorphisms and mRNA expression with clinical and pathological features, respectively. Four SNPs (rs1043996 in Notch3 and rs422951, rs520692, rs3830041 in Notch4) were significantly associated with overall survival (OS) (P = 0.023, P = 0.042, P = 0.028, and P = 0.001 respectively). Patients carrying the AA genotype in rs1043996 and TT/TC genotypes in rs422951 and rs520692 significantly decreased risks of death, compared to those carrying the AG/GG genotype in rs1043996 and CC genotype in rs422951 and rs520692, respectively. Patients carrying the TT genotype in rs3830041 showed poorer OS, compared with those carrying the TC/CC genotype. A haplotype block (rs422951 was in strong LD with rs520692, r2  = 0.843) was identified in Notch4. Notch3 mRNA expression significantly increased in tumor tissue, compared with nontumor normal tissue (P < 0.0001). Moreover, higher expression of Notch3 was associated with poorer OS (HR = 2.11, 95% CI = 1.32-3.37, P = 0.002) and shorter recurrence time of HBV-related HCC (HR = 1.96, 95% CI = 1.31-2.93, P = 0.001). Our findings collectively indicate that Notch receptors variants (rs1043996 in Notch3 and rs422951, rs520692, rs3830041 in Notch4) are independent predictive targets for OS in HBV-related HCC patients. Notch3 expression is a potential prognostic biomarker of OS and recurrence-free survival (RFS) prediction in HBV-related HCC patients following surgical treatment.

Safety and Efficacy Study of an Ozone Laser Combined Therapy Using Puncture Needle in the Treatment of Patients With Cervical Spondylosis.

Fifty-eight patients with cervical spondylosis (CS) were treated with patented technology of ozone laser combined therapy using puncture needle between August 2008 and February 2010. Visual Analogue Scale (VAS) score changes before and 6 months after surgery and MacNab score criteria 6 months after surgery were analyzed.

NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma.

Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP- ribosylation enzyme and plays important roles in a variety of cellular processes, including DNA damage response and tumor development. However, the post-transcriptional regulation of PARP1 remains largely unknown. In this study, we identified that the mRNA of PARP1 is associated with nuclear factor 90 (NF90) by RNA immunoprecipitation plus sequencing (RIP-seq) assay. The mRNA and protein levels of PARP1 are dramatically decreased in NF90-depleted cells, and NF90 stabilizes PARP1's mRNA through its 3'UTR. Moreover, the expression levels of PARP1 and NF90 are positively correlated in hepatocellular carcinoma (HCC). Finally, we demonstrated that NF90-depleted cells are sensitive to PARP inhibitor Olaparib (AZD2281) and DNA damage agents. Taken together, these results suggest that NF90 regulates PARP1 mRNA stability in hepatocellular carcinoma cells, and NF90 is a potential target to inhibit PARP1 activity.

The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I).

New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed.