A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Yu-Jie Yang - Top 30 Publications

Evaluation of PDQ-8 and its relationship with PDQ-39 in China: a three-year longitudinal study.

Parkinson's disease is characterized by motor and non-motor symptoms with wide ranging impacts on the health-related quality of life. The 39-item Parkinson's disease Questionnaire (PDQ-39) is the most widely used PD-specific health-related quality-of-life questionnaire. The short-form 8-item Parkinson's disease Questionnaire (PDQ-8) was found to produce results similar to that of the PDQ-39 cross-culturally. However, there is no evaluation of the PDQ-8 in the mainland of China.

A homozygous missense variant in HSD17B4 identified in a consanguineous Chinese Han family with type II Perrault syndrome.

Perrault syndrome is a rare multisystem disorder that manifests with sensorineural hearing loss in both sexes, primary ovarian insufficiency in females and neurological features. The syndrome is heterogeneous both genetically and phenotypically.

Asymmetric Synthesis of Cyclopenta3,4pyrroloindolones via N-Heterocyclic Carbene-Catalyzed Michael/Aldol/Lactamization Cascade Reaction.

The N-heterocyclic carbene-catalyzed asymmetric Michael/aldol/lactamization cascade reaction of enals and indole-derived enones for the synthesis of functionalized cyclopenta[3,4]pyrroloindolones with four consecutive stereogenic centers has been achieved. The products were obtained in good yield with high diastereoselectivity and excellent enantioselectivity.

Olfaction in Parkin carriers in Chinese patients with Parkinson disease.

Olfactory identification was reported to be better among PD (Parkinson disease) patients with Parkin mutations, but previous studies didn't eliminate the interference of other PD related genes on olfaction, and whether olfaction of Parkin mutations patients was better in Chinese population was still unknown.

Antidepressant effects of the extract of Dendrobium nobile Lindl on chronic unpredictable mild stress-induced depressive mice.

To investigate whether the extract of Dendrobium nobile Lindl (DNL) has an antidepressant effect on chronic unpredictable mild stress (CUMS)-induced depressive mice, 72 BALB/c male mice were randomly divided into the control group, the CUMS model group, the extract of DNL groups (50, 100 and 200 mg/kg DNL, i.g.) and the paroxetine group (10 mg/kg, i.g.). The different doses of DNL or the paroxetine was administered orally once daily to CUMS mice for 8 weeks (containing two-week preventive medication before the modeling). The same volume of distilled water was given to the control group and the CUMS group. Except for the control group, the other mice were exposed to chronic stress for 35 days. Behavioral tests were performed by using the sucrose preference test (SPT), the novelty-suppressed feeding (NSF) test, the tail suspension test (TST), and the forced swim test (FST). The levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were measured by the liquid chromatography-mass spectrometer (LC-MS)/MS. Compared with the control group, obvious behavioral changes were observed in the CUMS group after 5-week CUMS, including a decrease in the sucrose consumption, an increase in the latency to feeding in the NSF test and a prolongation of the immobility time in the TST. Compared with the CUMS group, the application of DNL resulted in a dose-dependent increase in sucrose consumption (P < 0.01) as paroxetine (10 mg/kg) did and a significant dose-dependent decrease in the latency to feeding in the NSF test (P < 0.05). In the TST, the application of paroxetine (10 mg/kg) and the high-dose DNL (200 mg/kg) obviously decreased the immobility time when compared with the CUMS group (P < 0.05). In the FST, compared with the CUMS group, all the groups had no significant differences in the immobility time (P > 0.05). In addition, in the hippocampus and cortex, the levels of 5-HT and DA were significantly decreased in the CUMS group compared with the control group (P < 0.05). In comparison with the CUMS group, paroxetine obviously increased the DA levels in the hippocampus and the cortex and the 5-HT level in the hippocampus (P < 0.05). DNL (50 and 200 mg/kg) significantly increased the DA level in cerebral cortex of the brain, and DNL (100 and 200 mg/kg) increased the DA level in the hippocampus. The 5-HT level in the 200 mg/kg DNL group was notably increased in both two brain regions (P < 0.05), but the 5-HT level in the 100 mg/kg DNL group was significantly increased only in the hippocampus (P < 0.01). These findings indicate that the extract of DNL has an antidepressant-like effect on CUMS-induced depressive mice and its mechanism may be related to the changes in DA and 5-HT in the hippocampus and cortex.

Induction of apoptotic DNA fragmentation mediated by mitochondrial pathway with caspase-3-dependent BID cleavage in human gastric cancer cells by a new nitroxyl spin-labeled derivative of podophyllotoxin.

4-[4''-(2'', 2'', 6'', 6''-tetramethyl-l''-piperidinyloxy) amino]-4'-demethyl-epipodophyllotoxin (GP7) is a new semi-synthesized nitroxyl spin-labeled derivative of podophyllotoxin with anti-leukemic and anti-osteosarcoma effects. The purpose of the present study is to investigate the anti-gastric cancer (GC) effects of GP7 and the possible involvement of caspase pathway in GP7-induced apoptotic DNA fragmentation in human GC cells.

Effectiveness and safety of Chinese massage therapy (Tui Na) on post-stroke spasticity: a prospective multicenter randomized controlled trial.

To evaluate the effectiveness and safety of Chinese massage therapy (Tui Na) for patients with post-stroke spasticity.

Traditional Chinese Exercise for Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials.

Traditional Chinese exercise (TCE) has widespread use for the prevention and treatment of cardiovascular disease; however, there appears to be no consensus about the benefits of TCE for patients with cardiovascular disease. The objective of this systematic review was to determine the effects of TCE for patients with cardiovascular disease.

Bilateral Neuropathy of Primary Sensory Neurons by the Chronic Compression of Multiple Unilateral DRGs.

To mimic multilevel nerve root compression and intervertebral foramina stenosis in human, we established a new animal model of the chronic compression of unilateral multiple lumbar DRGs (mCCD) in the rat. A higher occurrence of signs of spontaneous pain behaviors, such as wet-dog shaking and spontaneous hind paw shrinking behaviors, was firstly observed from day 1 onward. In the meantime, the unilateral mCCD rat exhibited significant bilateral hind paw mechanical and cold allodynia and hyperalgesia, as well as a thermal preference to 30°C plate between 30 and 35°C. The expression of activating transcription factor 3 (ATF3) was significantly increased in the ipsilateral and contralateral all-sized DRG neurons after the mCCD. And the expression of CGRP was significantly increased in the ipsilateral and contralateral large- and medium-sized DRG neurons. ATF3 and CGRP expressions correlated to evoked pain hypersensitivities such as mechanical and cold allodynia on postoperative day 1. The results suggested that bilateral neuropathy of primary sensory neurons might contribute to bilateral hypersensitivity in the mCCD rat.

Efficiency of muscle strength training on motor function in patients with coronary artery disease: a meta-analysis.

Existing literature has shown that patients with coronary artery disease (CAD) can benefit greatly from the strength training; therefore, the strength training should play a more important role in cardiac rehabilitation. However, the medical community may still have conservation to apply the strength training owing to no comprehensive study so far to compare the effectiveness of the strength training to the other trainings, such as aerobic training.

Fasudil, a Rho kinase inhibitor, promotes the autophagic degradation of A53T α-synuclein by activating the JNK 1/Bcl-2/beclin 1 pathway.

Accumulation of α-synuclein (α-syn) is pivotally implicated in the pathogenesis of Parkinson׳s disease (PD), and enhancing its clearance might be a promising strategy in PD treatment. It has recently been shown that Rho kinase (ROCK) activation is involved in many neurodegenerative diseases, and some ROCK inhibitors might promote the degradation of abnormal protein aggregates. However, it is not known if fasudil, the only ROCK inhibitor available in clinical setting, could promote the degradation of α-syn, and ameliorate the α-syn induced neurotoxicity. In this regard, we investigated the effect of fasudil on neurite injury caused by A53T α-syn overexpression and the implicated pathway it might mediate. In the current study, we found that under the condition of A53T α-syn overexpression, the neurite outgrowth decreased significantly with the increasing expression of ROCK2. Fasudil, the ROCK inhibitor, ameliorated such neurotoxicity and promoted the clearance of A53T α-syn. Its underlying mechanism was supported by that fasudil could increase the macroautophagy activation via JNK 1 and Bcl-2 phosphorylation and beclin 1/Vps34 complex formation. Taken together, fasudil might be able to provide a novel and promising strategy for PD treatment by enhancing α-syn clearance and activating the JNK 1/Bcl-2/beclin 1 pathway.

Hypoxia promotes C-X-C chemokine receptor type 4 expression through microRNA-150 in pancreatic cancer cells.

Hypoxia promotes pancreatic cancer progression by triggering cancer cell invasion. However, the mechanism underlying this process remains unclear, hindering the development of effective therapies. The present study aimed to delineate the molecular mechanisms underlying the prometastatic effect of hypoxia in pancreatic cancer cells. The expression of microRNA-150 (miRNA-150) was detected using reverse transcription-quantitative polymerase chain reaction in pancreatic cancer samples and in the hypoxia-induced CaPan2 human pancreatic cancer cell line. The target gene was identified using bioinformatics and a luciferase reporter assay. Inhibition of the expression of C-X-C chemokine receptor type 4 (CXCR4) by miRNA-150 was confirmed using transfection with miRNA-150 mimics. The prometastatic effect of hypoxia was detected using migration assays. The expression of miRNA-150 was shown to be downregulated in pancreatic cancer samples compared with that in normal pancreatic tissue samples. Furthermore, its expression was reduced in hypoxia-induced CaPan2 cells, compared with that in control cells. Bioinformatics and the results of the luciferase reporter assay, demonstrated that miRNA-150 inhibited the expression of CXCR4 by directly targeting the 3' untranslated region of CXCR4 mRNA. The results of the migration assay showed that hypoxia promotes cell migration and invasion. However, this prometastatic effect was reversed by transfection with miRNA-150 mimics. The present results suggest that hypoxia promotes pancreatic cancer migration by downregulating miRNA-150.

Tai Chi for improving cardiopulmonary function and quality of life in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis.

To examine the effect of Tai Chi on cardiopulmonary function and quality of life in chronic obstructive pulmonary disease.

Surgical versus non-surgical treatment for vertebral compression fracture with osteopenia: a systematic review and meta-analysis.

Surgical and non-surgical interventions are the two categories for treatment of vertebral compression fractures (VCFs). However, there is clinical uncertainty over optimal management. This study aimed to examine the safety and effectiveness of surgical management for treatment of VCFs with osteopenia compared with non-surgical treatment.

Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats.

The mechanisms associated with diabetes-induced neuropathic pain are complex and poorly understood. In order to understand the involvement of spinal microglia activity in diabetic pain, the present study investigated whether minocycline treatment is able to attenuate diabetic pain using a rat model. Diabetes was induced using a single intraperitoneal injection of streptozotocin (STZ). Minocycline was then intrathecally administered to the rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested weekly. The expression of OX-42, Iba-1, phospho-p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS), were examined in the spinal cord in order to evaluate the activation of microglia. The present study demonstrated that rats with STZ-induced diabetes exhibited increased mean plasma glucose concentration, decreased mean body weight and significant pain hypersensitivity compared with control rats. PWT and PWL values of rats with STZ-induced diabetes increased following treatment with minocycline. No differences were observed in expression levels of the microglial activity markers (OX-42, Iba-1 and phospho-p38 MAPK) between rats with STZ-induced diabetes and control rats. However, TNF-α, IL-1β and iNOS expression levels were higher in rats with STZ-induced diabetes compared with control rats. Following treatment with minocycline markers of microglial activation, including cytokines and iNOS, were downregulated in rats with STZ-induced diabetes. The results of the present study indicated that minocycline treatment may inhibit spinal microglial activation and attenuate diabetic pain in rats with STZ-induced diabetes.

Involvement of mortalin/GRP75/mthsp70 in the mitochondrial impairments induced by A53T mutant α-synuclein.

Mutations and excessive accumulation of α-synuclein (α-syn) can lead to the degeneration of dopaminergic neurons, indicating a pivotal role of α-syn in the pathogenesis of Parkinson's disease (PD). Although how α-syn contributes to PD is still elusive, mitochondrial impairments have been reported to be implicated in. Mortalin, a molecular chaperone mainly located in mitochondria, has been linked to the pathogenesis of PD in recent studies. Moreover, some proteomics studies indicate that mortalin is associated with PD-related proteins, including α-syn. Therefore it is of interest to understand the function of mortalin in the mitochondrial disruption induced by A53T α-syn overexpression. The present study modulated the expression of mortalin and detected the effect of mortalin on the mitochondrial impairments induced by A53T α-syn in SH-SY5Y cells. Our data revealed that A53T α-syn could disrupt mitochondrial dynamics and increase the neuronal susceptibility to neurotoxin rotenone. The expression of mortalin decreased significantly in dopaminergic cells overexpressing A53T α-syn; furthermore, the down-regulation of mortalin could attenuate the disrupted mitochondrial dynamics by reducing α-syn translocation to mitochondria, suggesting that a compensatory mechanism of mortalin might be implicated in the pathogenesis of PD.

Highly stereoselective synthesis of functionalized pyrrolo3,2-cquinolines via N-heterocyclic carbene catalyzed cascade sequence.

An N-heterocyclic carbene-catalyzed stereoselective Michael-Mannich-lactamization cascade reaction of tosyl-protected o-amino aromatic aldimines and 2-bromoenals for the construction of functionalized pyrrolo[3,2-c]quinolines with three consecutive stereocenters was achieved in good yields with excellent diastereo- and enantioselectivities.

Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau.

In grassland ecosystems, N and P fertilization often increase plant productivity, but there is no concensus if fertilization affects soil C fractions. We tested effects of N, P and N+P fertilization at 5, 10, 15 g m-2 yr-1 (N5, N10, N15, P5, P10, P15, N5P5, N10P10, and N15P15) compared to unfertilized control on soil C, soil microbial biomass and functional diversity at the 0-20 cm and 20-40 cm depth in an alpine meadow after 5 years of continuous fertilization. Fertilization increased total aboveground biomass of community and grass but decreased legume and forb biomass compared to no fertilization. All fertilization treatments decreased the C:N ratios of legumes and roots compared to control, however fertilization at rates of 5 and 15 g m-2 yr-1 decreased the C:N ratios of the grasses. Compared to the control, soil microbial biomass C increased in N5, N10, P5, and P10 in 0-20 cm, and increased in N10 and P5 while decreased in other treatments in 20-40 cm. Most of the fertilization treatments decreased the respiratory quotient (qCO2) in 0-20 cm but increased qCO2 in 20-40 cm. Fertilization increased soil microbial functional diversity (except N15) but decreased cumulative C mineralization (except in N15 in 0-20 cm and N5 in 20-40 cm). Soil organic C (SOC) decreased in P5 and P15 in 0-20 cm and for most of the fertilization treatments (except N15P15) in 20-40 cm. Overall, these results suggested that soils will not be a C sink (except N15P15). Nitrogen and phosphorus fertilization may lower the SOC pool by altering the plant biomass composition, especially the C:N ratios of different plant functional groups, and modifying C substrate utilization patterns of soil microbial communities. The N+P fertilization at 15 g m-2 yr-1 may be used in increasing plant aboveground biomass and soil C accumulation under these meadows.

Berberine ameliorates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats.

To investigate the potential effects of berberine on renal interstitial fibrosis (RIF) of obstructed kidneys in a unilateral ureteral obstruction (UUO) rat model.

N-heterocyclic carbene-catalyzed stereoselective cascade reaction: synthesis of functionalized tetrahydroquinolines.

The first N-heterocyclic carbene-catalyzed stereoselective aza-Michael-Michael-lactonization cascade reaction of 2'-aminophenylenones and 2-bromoenals for the construction of chiral functionalized tetrahydroquinolines with three consecutive stereogenic centers has been achieved in high yields (up to 98%) with excellent diastereo- (>25:1) and enantioselectivities (up to 98.7% ee).

Induction of apoptosis through caspase-independent or caspase-9-dependent pathway in mouse and human osteosarcoma cells by a new nitroxyl spin-labeled derivative of podophyllotoxin.

Previous study has found that a new nitroxyl spin-labeled derivative of podophyllotoxin, 4-[4"-(2",2",6",6"-tetramethyl-1"-piperidinyloxy)amino]-4'-demethyl-epipodophyllotoxin (GP7), can induce apoptosis in human leukemia cells. However, there have been no studies about the effects of GP7 on osteosarcoma (OS) cells. Here, we observed the anti-OS effects of GP7 in mouse and human OS cells with the comparison of etoposide. GP7 and etoposide inhibited the proliferation of a panel of mouse and human OS cells in a concentration- or time-dependent manner, and the inhibitory effect of GP7 on the proliferation of mouse LM8 or human U2OS cells was 1.28- or 1.35-fold higher than that of etoposide. GP7 or etoposide augmented the anti-OS effects of methotrexate, adriamycin, cisplatin, or their combination, and the combined inhibitory effects of GP7 with MTX on the proliferation of LM8 cells was higher than those of etoposide with MTX. GP7 arrested the cell cycle in S phase but etoposide in G(2)/M phase. GP7 or etoposide induced sub-G(1) peak, apoptotic DNA fragmentation, activations of caspase-3, -8, -9, and DNA fragmentation factor, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bak, and cytochrome-c release from mitochondria in both mouse and human OS cells. GP7 or etoposide also induced endonuclease G translocation from mitochondria into cytosol in mouse cells. GP7- or etoposide-induced apoptotic DNA fragmentation of human OS cells was inhibited by the pan caspase inhibitor and caspase-9 inhibitor, not by caspase-8 inhibitor whereas it was not inhibited by the pan caspase inhibitor in mouse OS cells. Our findings indicate that GP7 is effective against mouse and human OS cells in vitro. The apoptotic DNA fragmentation in mouse OS cells may be mediated by caspase-independent pathway with the involvement of endonuclease G whereas in human OS cells by caspase-9-dependent pathway downstream of the cytochrome-c-initiated caspase cascade.

Low-dose taurine upregulates taurine transporter expression in acute myocardial ischemia.

Taurine exerts a protective effect on cardiomyocytes. The aim of this study was to determine whether the protective effect of taurine is associated with the upregulation of taurine transporter (TAUT) expression in acute myocardial ischemia (AMI). To this end, we investigated TAUT expression in cultured cardiomyocytes exposed to hypoxia as well as in rats with AMI treated with or not with taurine. The morphology of cardiac tissues, the apoptosis of cardiomyocytes and cardiac function were examined. In addition, the taurine content and the expression of TAUT were measured. Our data demonstrated that taurine reversed the apoptosis induced by hypoxia and AMI, thereby, effectively protecting the myocardium. Taurine content and TAUT expression levels were significantly decreased when cardiomyocytes and cardiac tissues were subjected to hypoxic or ischemic stress, while the expression of cysteine sulfinate decarboxylase was unchanged. Moreover, treatment with taurine (100 mg/kg/day) significantly upregulated TAUT expression and elevated the taurine content in ischemic myocardial tissues. In vitro, the low-dose (40 mM) but not the high-dose (120 mM) administration of taurine significantly induced TAUT expression and elevated the intracellular taurine content in hypoxic cardiomyocytes. In conclusion, our data demonstrate that taurine exerts a protective effect on the ischemic myocardium. Low-dose but not high-dose taurine treatment upregulated TAUT expression and increased the intracellular taurine content in cardiomyocytes subjected to hypoxia as well as in AMI tissues.

Extraction technology optimization and quality analysis of volatile oil in Rhizoma Curcumae.

To investigate the effect of technologies and conditions on volatile oil yield extracted from Rhizoma Curcumae.

Pathological characteristics of sudden death caused by coronary thrombosis.

To explore medico-legal characteristics of sudden death caused by coronary heart disease combined with coronary thrombosis.

Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish.

In mammals, increased Notch signaling is held partly responsible for a lack of neurogenesis after a spinal injury. However, this is difficult to test in an essentially nonregenerating system. We show that in adult zebrafish, which exhibit lesion-induced neurogenesis, e.g., of motor neurons, the Notch pathway is also reactivated. Although apparently compatible with neuronal regeneration in zebrafish, forced activity of the pathway significantly decreased progenitor proliferation and motor neuron generation. Conversely, pharmacological inhibition of the pathway increased proliferation and motor neuron numbers. This demonstrates that Notch is a negative signal for regenerative neurogenesis, and, importantly, that spinal motor neuron regeneration can be augmented in an adult vertebrate by inhibiting Notch signaling.

Design of plant leaf bionic camouflage materials based on spectral analysis.

The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

Study on homogeneity of low-pressure air dielectric barrier discharge by optical emission spectrum.

In the present work, a uniform discharge in low-pressure air was obtained by a dielectric barrier discharge device. The spatial homogeneity of the plasma temperature was studied by optical emission spectrum. The vibrational temperature was calculated by second positive band C3 pi(u) --> B3 pi(g) and the rotational temperature (gas temperature) was calculated by N2+ first negative band B 2 sigma(u)+ --> X 2 sigma(g)+. It was found that the vibrational temperature decreases with the voltage increasing, while the rotational temperature increases. In addition, the fluctuation amplitudes of vibrational and rotational temperature of the plasma along diameter of the discharge area decrease with the voltage increasing, which indicates that the homogeneity of the plasma increases with the voltage increasing. These results are of great significance to the application of uniform discharge obtained in air dielectric barrier discharge for material processing.

Study on vibrational temperature and gas temperature in a hollowneedle-plate discharge plasma.

A 1.6-3 cm long plasma torch was generated when argon gas was introduced by using a hollowneedle-plate discharge device working in atmosphere. The vibrational temperature and the gas temperature at plasma root and tip were studied by using optical emission spectrum at different argon gas flow. The gas temperature was obtained by comparing experimental line shape of OH radicals band around 309 nm with its simulated line shape. The vibrational temperature was calculated using N2 second posi tive band system C3:pi u-B3 pi g. It was found that the gas temperatures at arc root and arc tip are equal and they decrease with the argon flow rate increasing. The gas temperature decreases from 350 to 300 K when argon flow rate increases from 3.0 to 6.5 mL x min(-1). The vibrational temperature at are tip (1950 K) is higher than that at arc root (1755 K) under a low gas flow rate (e.g., 3.0 mL x min(-1)). With gas flow rate increasing, the vibrational temperature at both tip and root decreases, but the decreasing rate at are tip is faster than that at arc root. When gas flow is larger, the vibrational temperatures at tip and root tend to be equal.

Spatial distributions of OH radicals and O atoms in argon hollow needle-plate discharge in ambient air.

In the present work, the spatial distributions of OH radicals and O atoms were studied in argon hollowneedle-plate discharge in ambient air. A 3 cm long plasma torch was generated in the discharge. The optical emission spectrum from 300 to 800 nm was collected. Besides Ar I lines and N2 second positive band system, OH emission band around 309 nm, O line at 777.4 nm and weaker H line were found in the optical emission spectrum. Because OH radicals and O atoms play an important role in material surface modification, the relative intensities of the OH radicals band (around 309 nm) and O atom line (777.4 nm) were analyzed. The results show that the number of OH radicals decreases rapidly and the number of O atoms follows a rule of increasing firstly and then decreasing from are root to arc tip.

Biological relativity of imaging of CT perfusion for pancreases to pancreatic cancer.

To explore the relationships between perfusion values of pancreatic cancers and the microvessel density of tumors (MVD) and vessel endothelial growth factor (VEGF), and the clinical value of multiple-slice spiral CT perfusion imaging in diagnosing pancreatic cancers.