PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Zoe Iliodromiti - Top 30 Publications

Diabetes mellitus and gynecologic cancer: molecular mechanisms, epidemiological, clinical and prognostic perspectives.

Diabetes mellitus, the prevalence of which has increased dramatically worldwide, may put patients at a higher risk of cancer. The aim of our study is the clarification of the possible mechanisms linking diabetes mellitus and gynecological cancer and their epidemiological relationship.

Birth rates by maternal age in Greece: background, trends and future perspectives.

Review: MicroRNAs in assisted reproduction and their potential role in IVF failure.

MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression stability. In the endometrium, miRNAs are involved in the dynamic changes associated with the menstrual cycle, implicated in implantation and in reproductive disorders. We performed a review in an attempt to assess the potential biological pathways linking altered miRNAs profiles with in vitro fertilisation (IVF) failure. Crucially, as miRNAs appear to have a significant role in the course of reproduction, they are excellent research candidates with the potential to enable a better understanding over the underlying molecular activities that prevent implantation and further progression of the embryo. Further steps include in-depth pathway mapping of the implantation process and the characterization of the respective miRNAs and associated links. The efficiency of any intervention should determine whether miRNA profiling could possibly be adopted in routine practice to substantially improve the diagnostic accuracy and, in parallel, the directed treatment of the next-generation IVF.

Letter to the editor--Homicides in Greece: trends and features.

An emerging crisis in Greece's medical research output.

The Janus face of maternal serum relaxin: a facilitator of birth, might it also induce preterm birth?

Preterm birth is a major cause of neonatal morbidity and mortality in the developed world. In order to better understand the pathophysiological pathway of this condition, the role of genetic factors and/or inflammation-associated molecules, as well as of socioeconomic parameters, is therefore under intense investigation. The purpose of this review study was to examine the potential role of maternal serum relaxin levels in the etiology of preterm birth.

Cancer mortality in Greece during the financial crisis.

Cardiovascular mortality and the financial crisis in Greece: trends and outlook.

Greece's economic crisis and suicide rates: overview and outlook.

Probing the impact of sex steroids and menopause-related sex steroid deprivation on modulation of immune senescence.

Immune senescence denotes the general decline in immune system function, characterized by a reduced immune response and an increased inflammatory state. Menopause is a natural change in a women's life, the menopause-related low estrogen levels affecting many body functions, among them the immune system. Numerous human studies with menopausal women and animal models with surgically induced menopause show a clear impact of sex steroids in immune responses. Female superiority in vaccination response and predisposition to infections are eliminated after menopause, while during menopause inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukins-1β, 6, 8 and 13 (IL-1β, IL-6, IL-8, IL-13) and Monocyte Chemoattractant Protein-1 (MCP-1) are increased, implying a molecular connection of sex steroid loss with immune senescence. Moreover, immune cells modify their number and function after the menopausal transition, this offering another explanation for immune senescence. Until now most of the existing studies have concluded that menopause plays an additional role to aging in immune senescence. While it is clear that we are as yet far from thoroughly understanding the molecular pathways connecting sex steroids and menopause with immune senescence, such knowledge is highly likely to enable future targeted interventions in treatment and prevention of age-related diseases in women.

Austerity and health in Greece.

Metabolism in pregnancy: a field for novel therapies.

Greece's birth rates and the economic crisis.

Fetal outcomes associated with metoclopramide use in pregnancy.

Resuscitation fluids.

Oral fluconazole during pregnancy and risk of birth defects.

Hemizona assay and sperm penetration assay in the prediction of IVF outcome: a systematic review.

The limited predictive value of semen analysis in achieving natural conception or in IVF outcome confirms the need for sperm function tests to determine optimal management. We reviewed HZA and SPA predictive power in IVF outcome, with statistical significance of diagnostic power of the assays. HZA was readily efficient in predicting IVF outcome, while evident inconsistency among the studies analysed framed the SPA's role in male fertility evaluation. Considerable variation was noted in the diagnostic accuracy values of SPA with wide sensitivity (52-100%), specificity (0-100%), and PPV (18-100%) and NPV (0-100%) together with fluctuation and notable differentiation in methodology and cutoff values employed by each group. HZA methodology was overall consistent with minor variation in cutoff values and oocyte source, while data analysis reported strong correlation between HZA results with IVF outcome, high sensitivity (75-100%), good specificity (57-100%), and high PPV (79-100%) and NPV (68-100%). HZA correlated well with IVF outcome and demonstrated better sensitivity/specificity and positive/negative predictive power. Males with normal or slightly abnormal semen profiles could benefit by this intervention and could be evaluated prior to referral to assisted reproduction. HZA should be used in a sequential fashion with semen analysis and potentially other bioassays in an IVF setting.

Adolescent birth rates in Greece: features and recent unfavorable trends.

Cassandra's prophecy and the trend of delaying childbearing: the paradigm of Greece.

The incidence of preeclampsia and eclampsia in Australia: 2000 through 2008.

Addition of prednisolone and heparin in patients with failed IVF/ICSI cycles: a preliminary report of a clinical trial.

Through a non-randomized clinical trial, we examined the theoretical benefit of the coadministration of low molecular weight heparin (LMWH) and prednisolone on pregnancy outcomes in women with previously failed IVF/ICSI cycles. Fifteen women constituted the study group, and were compared with 19 women receiving LMWH alone and another 18 women with no drugs. Our finding that the combination of the two drugs produced positive differences in terms of embryo quality, pregnancy and live birth rates points to the necessity for adequately powered randomized trials.

Bakri balloon tamponade for the management of postpartum hemorrhage.

Uterine prolapse in pregnancy: risk factors, complications and management.

Presentation of uterine prolapse is a rare event in a pregnant woman, which can be pre-existent or else manifest in the course of pregnancy. Complications resulting from prolapse of the uterus in pregnancy vary from minor cervical infection to spontaneous abortion, and include preterm labor and maternal and fetal mortality as well as acute urinary retention and urinary tract infection. Moreover, affected women may be at particular risk of dystocia during labor that could necessitate emergency intervention for delivery. Recommendations regarding the management of this infrequent but potentially harmful condition are scarce and outdated. This review will examine the causative factors of uterine prolapse and the antepartum, intrapartum and puerperal complications that may arise from this condition as well as therapeutic options available to the obstetrician. While early recognition and appropriate prenatal management of uterine prolapse during pregnancy is imperative, implementation of conservative treatment modalities throughout pregnancy, these applied in accordance with the severity of the uterus prolapse and the patient's preference, may be sufficient to achieve uneventful pregnancy and normal, spontaneous delivery.

Monocyte function in the fetus and the preterm neonate: immaturity combined with functional impairment.

It is well known that the innate immunity system, involving the contribution of monocytes and macrophages, may dysfunction in fetuses and preterm neonates. Monocytes are capable of differentiating into dendritic cells (DCs) or into mucosal macrophages during certain infections and of producing inflammatory mediators such as TNF- α (tumor necrosis factor-alpha), nitric oxide, and reactive oxygen species. Fetuses as well as neonates are prone to infections as a result of a defective mechanism within the above mononuclear system. Monocyte function in fetuses and preterm neonates depends on the phagocytic and oxidative capacity of macrophages and their antigen-adhesion ability. Functional rather than anatomical impairment is probably the underlying cause, while a defective production of cytokines, such as TNF-α , IL-6 (Interleukin 6), IL-1β (Interleukin 1 beta), and G-CSF (Granulocyte Colony-Stimulating Factor), has also been involved. The insufficient production of the above inflammatory mediators and the phenomenon of endotoxin intolerance, which latter occurs during entry of any antigen into the premature neonate, place preterm neonates at higher risk for infections. Existing research data are herein presented which, however, are deficient and fragmental, this accounting for the fact that the precise pathophysiology of these disturbances is not yet fully clarified.

Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways.

Acute lung injury (ALI) results in high morbidity and mortality among preterm neonates and efforts have therefore been devoted to both antenatal and postnatal prevention of the disease. ALI is the result of an inflammatory response which is triggered by a variety of different mechanisms. It mostly affects the fetal lung and, in particular, causes damage to the integrity of the lung's alveolar-capillary unit while weakening its cellular linings. Chemotactic activity and inflammatory products, such as proinflammatory cytokines TNF-α, IL-1, IL-6, IL-11, VEGF,TGF-α and TGF-β, provoke serious damage to the capillary endothelium and the alveolar epithelium, resulting in hyaline membrane formation and leakage of protein-rich edema fluid into the alveoli. Chorioamnionitis plays a major part in triggering fetal lung inflammation, while mechanical ventilation, the application of which is frequently necessary in preterm neonates, also causes ALI by inducing proinflammatory cytokines. Many different ventilation-strategies have been developed in order to reduce potential lung injury. Furthermore, tissue injury may occur as a result of injurious oxygen by-products (Reactive Oxygen Species, ROS), secondary to hyperoxia. Knowledge of the inflammatory pathways that connect intra-amniotic inflammation and ALI can lead to the formulation of novel interventional procedures. Future research should concentrate on the pathophysiology of ALI in preterm neonates and οn possible pharmaceutical interventions targeting prevention and/or resolution of ALI.

Granulocyte macrophage colony stimulating factor supplementation in culture media for subfertile women undergoing assisted reproduction technologies: a systematic review.

Granulocyte macrophage colony stimulating factor (GM-CSF) is a cytokine/growth factor produced by epithelial cells that exerts embryotrophic effects during the early stages of embryo development. We performed a systematic review, and six studies that were performed in humans undergoing assisted reproduction technologies (ART) were located. We wanted to evaluate if embryo culture media supplementation with GM-CSF could improve success rates. As the type of studies and the outcome parameters investigated were heterogeneous, we decided not to perform a meta-analysis. Most of them had a trend favoring the supplementation with GM-CSF, when outcomes were measured in terms of increased percentage of good-quality embryos reaching the blastocyst stage, improved hatching initiation and number of cells in the blastocyst, and reduction of cell death. However, no statistically significant differences were found in implantation and pregnancy rates in all apart from one large multicenter trial, which reported favorable outcomes, in terms of implantation and live birth rates. We propose properly conducted and adequately powered randomized controlled trials (RCTs) to further validate and extrapolate the current findings with the live birth rate to be the primary outcome measure.

Endocrine, paracrine, and autocrine placental mediators in labor.

Considering that preterm birth accounts for about 6-10% of all births in Western countries and of more than 65% of all perinatal deaths, elucidation of the particularly complicated mechanisms of labor is essential for determination of appropriate and effective therapeutic interventions. Labor in humans results from a complex interplay of fetal and maternal factors, which act upon the uterus to trigger pathways leading gradually to a coordinated cervical ripening and myometrial contractility. Although the exact mechanism of labor still remains uncertain, several components have been identified and described in detail. Based on the major role played by the human placenta in pregnancy and the cascade of labor processes activated via placental mediators exerting endocrine, paracrine, and autocrine actions, this review article has aimed at presenting the role of these mediators in term and preterm labor and the molecular pathways of their actions. Some of the aforementioned mediators are involved in myometrial activation and preparation and others in myometrial stimulation leading to delivery. In the early stages of pregnancy, myometrial molecules, like progesterone, nitric oxide, and relaxin, contribute to the retention of pregnancy. At late stages of gestation, fetal hypothalamus maturation signals act on the placenta causing the production of hormones, including CRH, in an endocrine manner; the signals then enhance paracrinically the production of more hormones, such as estrogens and neuropeptides, that contribute to cervical ripening and uterine contractility. These molecules act directly on the myometrium through specific receptors, while cytokines and multiple growth factors are also produced, additionally contributing to labor. In situations leading to preterm labor, as in maternal stress and fetal infection, cytokines trigger placental signaling sooner, thus leading to preterm birth.

Osteoprotegerin as a marker of atherosclerosis in diabetic patients.

Atherosclerosis is the principal cause of cardiovascular disease (CVD) and has many risk factors, among which is diabetes. Osteoprotegerin (OPG) is a soluble glycoprotein, involved in bone metabolism. OPG is also found in other tissues, and studies have shown that it is expressed in vascular smooth muscle cells. OPG has been implicated in various inflammations and also has been linked to diabetes mellitus. Increased serum OPG levels were found in patients with diabetes and poor glycemic control. Furthermore, prepubertal children with type 1 diabetes have significantly increased OPG levels. Receptor activator of nuclear factor kappa-B ligand (RANKL) is not found in the vasculature in normal conditions, but may appear in calcifying areas. OPG and RANKL are important regulators of mineral metabolism in both bone and vascular tissues. Few data are available on the relationship between plasma OPG/RANKL levels and endothelial dysfunction as assessed using noninvasive methods like ultrasound indexes, neither in the general population nor, more specifically, in diabetic patients. The aim of our review study was to investigate, based on the existing data, these interrelationships in order to identify a means of predicting, via noninvasive methods, later development of endothelial dysfunction and vascular complications in diabetic patients.

Placental growth factor (PlGF): a key to optimizing fetal growth.

The needs of the uterus and the fetus for the provision of nutrients and oxygen, supplied by the blood flow, are understandably extremely high, with the circulatory system playing the most important role in this action. Abnormal vascular growth and transformation that create a high vessel resistance network have been associated with various pregnancy pathologies, including miscarriage, small for gestational age (SGA) fetuses with or without preeclampsia and intrauterine growth restriction (IUGR). Placental growth factor (PlGF) has a major role in vasculogenesis and angiogenesis in human placenta. Low concentrations of PlGF and high concentrations of its inhibitor-soluble Fms-like tyrosine kinase-1 (sFlt-1) are linked with impaired angiogenesis and placental development, leading to the above pregnancy complications. The activity of vascular endothelial growth factor (VEGF), which is the most potent of all angiogenic mediators, is partly modulated by PlGF. Although the mechanisms via which PlGF exerts its various effects are still under investigation, we herein discuss the known actions exerted by this major mediator together with its results on fetal growth.

Circadian clock gene expression is impaired in gestational diabetes mellitus.

Dysfunction of the circadian clock genes is involved in the development of obesity and type 2 diabetes (T2D). Since gestational diabetes mellitus (GDM) and T2D share common genetic and phenotypic features, in the present study, we investigated the status of the circadian clock in a cohort of 40 Greek pregnant women with GDM, four with T2D and 20 normal controls. Peripheral blood mRNA transcript levels of 10 clock genes (CLOCK1, BMAL1, PER1, PER2, PER3, PPARΑ, PPARD, PPARG, CRY1 and CRY2) were determined by real-time quantitative PCR. GDM patients expressed significantly lower transcript levels of BMAL1, PER3, PPARD and CRY2 compared to control women (p < 0.05). No significant difference was documented between GDM women maintained either under insulin treatment or diet. A positive correlation was found between the expression of BMAL1 versus CRY2 (r = 0.45, p = 0.003) and BMAL1 versus PPARD (r = 0.43, p = 0.004). Further investigation on the functional relevance of these clock genes, disclosed that expression of PER3 correlated negatively with HbA1C levels (r = -0.36, p = 0.022). These data document for the first time that the expression of BMAL1, PER3, PPARD and CRY2 genes is altered in GDM compared to normal pregnant women and support the notion that deranged expression of clock genes may play a pathogenic role in GDM.