A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Egr3 - Top 30 Publications

Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy.

The neurotrophins (NTs) play a key role in neuronal survival and maintenance. The TRK (tropomyosin-related kinase) tyrosine kinase receptors (TRKA, TRKB, TRKC) are high affinity receptors for NTs. There is increasing data demonstrating an important role of the TRK family in cancer initiation and progression. NTs have been known for many years to promote chemotaxis, maturation, and survival of mast cells. However, the role of NT signaling in the pathogenesis of mastocytosis is not well understood. In this study, we demonstrate that activation of TRKA by its ligand nerve growth factor (NGF) is potent to trigger a disease in mice with striking similarities to human systemic mastocytosis (SM). Moreover, activation of TRKA by NGF strongly rescues KIT inhibition-induced cell death of mast cell lines and primary mast cells from patients with SM, and this rescue effect can be efficiently blocked by entrectinib (a new pan TRK specific inhibitor). HMC-1 mast cell leukemia cells that are resistant to KIT inhibition induced by TRKA activation show reactivation of MAPK/ERK (extracellular signal-regulated kinase) and strong upregulation of early growth response 3 (EGR3), suggesting an important role of MAPK-EGR3 axis in the development of resistance to KIT inhibition. Targeting both TRK and KIT significantly prolongs survival of mice xenotransplanted with HMC-1 cells compared with targeting KIT alone. Thus, these data strongly suggest that TRKA signaling can improve neoplastic mast cell fitness. This might explain at least in part why treatment with KIT inhibitors alone so far has been disappointing in most published clinical trials for mastocytosis. Our data suggest that targeting both KIT and TRKs might improve efficacy of molecular therapy in SM with KIT mutations.

The mycotoxin metabolite deepoxy-deoxynivalenol increases apoptosis and decreases steroidogenesis in bovine ovarian theca cells.

The mycotoxin deoxynivalenol (DON) has been shown to inhibit ovarian granulosa cell function in cattle in vitro, but it is not known whether DON or its metabolite deepoxy-DON (DOM-1) affect theca cell function. The objectives of the present study were to determine the effects of DON and of DOM-1 on theca cell steroidogenesis and apoptosis, and to determine the main pathways through which they act. Bovine theca cells were cultured in a non-luteinizing serum-free culture system, and challenged with DON or DOM-1 for 4 d to measure steroidogenesis and apoptosis, for 1-8 h to measure immediate-early genes, and for 5-60 min to measure phosphorylation of intracellular signaling proteins. Addition of DON decreased progesterone secretion at doses as low as 0.5 ng/ml but had no effect on testosterone secretion. Addition of DOM-1 inhibited progesterone and testosterone secretion at 0.5 ng/ml. Treatment of cells with 1 ng/ml DOM-1 increased the proportion of apoptotic cells, whereas DON had no effect. Addition of DON or DOM-1 stimulated phosphorylation of EIF2AK2, MAPK3/1 and AKT. However, DON inhibited and DOM-1 stimulated MAPK14 phosphorylation. DON increased levels of mRNA encoding early-immediate genes EGR1, EGR3 and FOS, whereas DOM-1 was without effect. DOM-1 but not DON increased abundance of mRNA of the endoplasmic reticulum (ER) stress-related proteins, PRKRA and ATF4. We conclude that DOM-1 has a major impact on theca function in cattle, and possibly induces theca cell apoptosis through ER stress.

Early emergence of altered 5-HT2A receptor-evoked behavior, neural activation and gene expression following maternal separation.

The early stress of Maternal Separation (MS) contributes to the establishment of adult psychopathology. The serotonergic (5-HT) system is implicated during this temporal window in mediating the development of mood-related behaviors. MS is reported to evoke altered 5-HT2A receptor function in adulthood. However, the ontogeny of altered 5-HT2A receptor responsivity following MS remains unknown. Here, we examined 5-HT2A receptor agonist, DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) (2mg/kg) evoked responses, namely stereotypical head-twitch behaviors in control and MS Sprague-Dawley rat pups at postnatal day 21 (P21). MS involved a separation of pups from the dam for 3h daily from postnatal day 2-14. MS pups at P21 exhibited significantly enhanced head-twitch behaviors compared to controls. Using c-Fos cell counting we examined neural activation in control and MS pups following DOI treatment. MS pups exhibited altered DOI-evoked c-Fos expression within all mPFC subdivisions, but not in the hippocampus, lateral septum and hypothalamus, suggesting differential prefrontal neural activation upon 5-HT2A receptor stimulation following early stress. Gene profiling of 5-HT2A receptor-regulated immediate early genes (IEGs) indicated a decline in the expression of Fos, Fra1 and Egr1 mRNA under baseline conditions in the mPFC of MS pups. MS pups also showed an altered pattern in the regulation of several 5-HT2A receptor-regulated IEGs (Fos, Fra1, Bdnf, Egr1, Egr3) following DOI treatment. Collectively, these results highlight an early emergence of altered 5-HT2A receptor-evoked behavioral responses and neural activation patterns in multiple brain regions in animals with a history of MS.

System modeling reveals the molecular mechanisms of HSC cell cycle alteration mediated by Maff and Egr3 under leukemia.

Molecular mechanisms of the functional alteration of hematopoietic stem cells (HSCs) in leukemic environment attract intensive research interests. As known in previous researches, Maff and Egr3 are two important genes having opposite functions on cell cycle; however, they are both highly expressed in HSCs under leukemia. Hence, exploring the molecular mechanisms of how the genes act on cell cycle will help revealing the functional alteration of HSCs.

Molecular basis of dendritic atrophy and activity in stress susceptibility.

Molecular and cellular adaptations in nucleus accumbens (NAc) medium spiny neurons (MSNs) underlie stress-induced depression-like behavior, but the molecular substrates mediating cellular plasticity and activity in MSN subtypes in stress susceptibility are poorly understood. We find the transcription factor early growth response 3 (EGR3) is increased in D1 receptor containing MSNs of mice susceptible to social defeat stress. Genetic reduction of Egr3 levels in D1-MSNs prevented depression-like outcomes in stress susceptible mice by preventing D1-MSN dendritic atrophy, reduced frequency of excitatory input and altered in vivo activity. Overall, we identify NAc neuronal-subtype molecular control of dendritic morphology and related functional adaptations, which underlie susceptibility to stress.

Early growth response 2 and Egr3 are unique regulators in immune system.

The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.

KSRP suppresses cell invasion and metastasis through miR-23a-mediated EGR3 mRNA degradation in non-small cell lung cancer.

KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3'UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.

The Proprioceptive System Regulates Morphologic Restoration of Fractured Bones.

Successful fracture repair requires restoration of bone morphology and mechanical integrity. Recent evidence shows that fractured bones of neonatal mice undergo spontaneous realignment, dubbed "natural reduction." Here, we show that natural reduction is regulated by the proprioceptive system and improves with age. Comparison among mice of different ages revealed, surprisingly, that 3-month-old mice exhibited more rapid and effective natural reduction than newborns. Fractured bones of null mutants for transcription factor Runx3, lacking functional proprioceptors, failed to realign properly. Blocking Runx3 expression in the peripheral nervous system, but not in limb mesenchyme, recapitulated the null phenotype, as did inactivation of muscles flanking the fracture site. Egr3 knockout mice, which lack muscle spindles but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types, as well as muscle contraction, are required for this regulatory mechanism. These findings uncover a physiological role for proprioception in non-autonomous regulation of skeletal integrity.

The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis.

Maintaining posture requires tight regulation of the position and orientation of numerous spinal components. Yet, surprisingly little is known about this regulatory mechanism, whose failure may result in spinal deformity as in adolescent idiopathic scoliosis. Here, we use genetic mouse models to demonstrate the involvement of proprioception in regulating spine alignment. Null mutants for Runx3 transcription factor, which lack TrkC neurons connecting between proprioceptive mechanoreceptors and spinal cord, developed peripubertal scoliosis not preceded by vertebral dysplasia or muscle asymmetry. Deletion of Runx3 in the peripheral nervous system or specifically in peripheral sensory neurons, or of enhancer elements driving Runx3 expression in proprioceptive neurons, induced a similar phenotype. Egr3 knockout mice, lacking muscle spindles, but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types may be required for this regulatory mechanism. These findings uncover a central role for the proprioceptive system in maintaining spinal alignment.

Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

Regulation and action of early growth response 1 in bovine granulosa cells.

Fibroblast growth factors (FGF) modify cell proliferation and differentiation through receptor tyrosine kinases, which stimulate the expression of transcription factors including members of the early growth response (EGR) family. In ovarian granulosa cells, most FGFs activate typical response genes, although the role of EGR proteins has not been described. In the present study, we determined the regulation of EGR mRNA by FGFs and explored the role of EGR1 in the regulation of FGF-response genes. Addition of FGF1, FGF2, FGF4 or FGF8b increased EGR1 and EGR3 mRNA levels, whereas FGF18 increased only EGR1 mRNA abundance. No mRNA encoding EGR2 or EGR4 was detected. Overexpression of EGR1 increased EGR3 mRNA levels as well as the FGF-response genes SPRY2, NR4A1 and FOSL1 and also increased the phosphorylation of MAPK3/1. Knockdown of EGR3 did not alter the ability of FGF8b to stimulate SPRY2 mRNA levels. These data demonstrate the regulation of EGR1 and EGR3 mRNA abundance by FGFs in granulosa cells and suggest that EGR1 is likely an upstream component of FGF signaling in granulosa cells.

Impact of lipoprotein apheresis with dextran-sulfate adsorption on the expression of genes involved in cardiovascular health in the blood of patients with homozygous familial hypercholesterolemia.

Lipoprotein apheresis (LA) with dextran sulfate adsorption (DSA) is a reliable method to decrease LDL-cholesterol (C) concentrations in patients with homozygous familial hypercholesterolemia (HoFH). The objective of the present study was to investigate the impact of LA with DSA on the mRNA expression of genes associated with cardiovascular health in the whole blood of HoFH patients. Blood samples were collected before and after LA treatment with DSA in 9 HoFH patients. Microarray analyses were performed to measure the whole blood expression of >30 000 annotated genes pre- and post-LA. Concomitant reductions in LDL-C (median -73.8%, range: -55.9 to -82.0, P = .0001) and lipoprotein (a) concentrations (median -74.1%, range -65.6 to -84.1, P = .003) were induced with LA treatment. LA with DSA did not impact the whole blood mRNA expression of most key genes involved in cardiovascular health, including those associated with cholesterol, fatty acid and lipoprotein metabolism. However, LA with DSA significantly upregulated the whole blood expression of early growth response protein (EGR)1 (1.94-fold, P = .02), EGR3 (1.56-fold, P = .0008) and B-cell lymphoma 3-encoded protein (BCL3; 1.25-fold, P = .03). In conclusion, this study demonstrated that a single LA treatment with DSA has very limited impact on the whole blood expression of a broad spectrum of genes associated with cardiovascular health. Our results suggest that contact between blood cells and the primary membrane or extracorporeal circulation could upregulate the expression of EGR1, EGR3, BCL3, and MMP9 in blood cells.

Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice.

Maternal and paternal high-fat (HF) diet intake before and/or during pregnancy increases mammary cancer risk in several preclinical models. We studied if maternal consumption of a HF diet that began at a time when the fetal primordial germ cells travel to the genital ridge and start differentiating into germ cells would result in a transgenerational inheritance of increased mammary cancer risk.

Beyond Neuronal Activity Markers: Select Immediate Early Genes in Striatal Neuron Subtypes Functionally Mediate Psychostimulant Addiction.

Immediate early genes (IEGs) were traditionally used as markers of neuronal activity in striatum in response to stimuli including drugs of abuse such as psychostimulants. Early studies using these neuronal activity markers led to important insights in striatal neuron subtype responsiveness to psychostimulants. Such studies have helped identify striatum as a critical brain center for motivational, reinforcement and habitual behaviors in psychostimulant addiction. While the use of IEGs as neuronal activity markers in response to psychostimulants and other stimuli persists today, the functional role and implications of these IEGs has often been neglected. Nonetheless, there is a subset of research that investigates the functional role of IEGs in molecular, cellular and behavioral alterations by psychostimulants through striatal medium spiny neuron (MSN) subtypes, the two projection neuron subtypes in striatum. This review article will address and highlight the studies that provide a functional mechanism by which IEGs mediate psychostimulant molecular, cellular and behavioral plasticity through MSN subtypes. Insight into the functional role of IEGs in striatal MSN subtypes could provide improved understanding into addiction and neuropsychiatric diseases affecting striatum, such as affective disorders and compulsive disorders characterized by dysfunctional motivation and habitual behavior.

Attenuated Late-Phase Arc Transcription in the Dentate Gyrus of Mice Lacking Egr3.

The dentate gyrus (DG) engages in sustained Arc transcription for at least 8 hours following behavioral induction, and this time course may be functionally coupled to the unique role of the DG in hippocampus-dependent learning and memory. The factors that regulate long-term DG Arc expression, however, remain poorly understood. Animals lacking Egr3 show less Arc expression following convulsive stimulation, but the effect of Egr3 ablation on behaviorally induced Arc remains unknown. To address this, Egr3-/- and wild-type (WT) mice explored novel spatial environments and were sacrificed either immediately or after 5, 60, 240, or 480 minutes, and Arc expression was quantified by fluorescence in situ hybridization. Although short-term (i.e., within 60 min) Arc expression was equivalent across genotypes, DG Arc expression was selectively reduced at 240 and 480 minutes in mice lacking Egr3. These data demonstrate the involvement of Egr3 in regulating the late protein-dependent phase of Arc expression in the DG.

Grb2-associated binder-1 is required for extrafusal and intrafusal muscle fiber development.

The neuregulin-1 (NRG1) signaling pathway plays an important role in the development of the peripheral neuromuscular system, including in muscle spindle and postnatal myelination. We previously showed that NRG1 on the axonal membrane regulates peripheral nerve myelination through Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling. Here, we determined the role of Gab1 in the development of muscles and the muscle spindle using muscle-specific conditional Gab1 knockout mice. The mutant mice showed general retardation in muscular growth and hypotrophy of extrafusal muscle fibers. In addition, the muscle-specific Gab1 knockout mutant exhibited significant underdevelopment of muscle spindles, which are normally regulated by NRG1, and abnormal proprioceptive behavior. Furthermore, the selective knockdown of Gab1 in C2C12 muscle cells reduced NRG1-induced expression of Egr3, a critical transcription factor for muscle spindle development. However, Gab2 knockout mice did not show any defects in the development of muscles or muscle spindles. Our findings suggest that Gab1 is an essential signaling molecule in mediating axonal NRG1 signaling for the development of both extrafusal and intrafusal muscle fibers.

Perioperative COX-2 and β-Adrenergic Blockade Improves Metastatic Biomarkers in Breast Cancer Patients in a Phase-II Randomized Trial.

Purpose: Translational studies suggest that excess perioperative release of catecholamines and prostaglandins may facilitate metastasis and reduce disease-free survival. This trial tested the combined perioperative blockade of these pathways in breast cancer patients.Experimental Design: In a randomized placebo-controlled biomarker trial, 38 early-stage breast cancer patients received 11 days of perioperative treatment with a β-adrenergic antagonist (propranolol) and a COX-2 inhibitor (etodolac), beginning 5 days before surgery. Excised tumors and sequential blood samples were assessed for prometastatic biomarkers.Results: Drugs were well tolerated with adverse event rates comparable with placebo. Transcriptome profiling of the primary tumor tested a priori hypotheses and indicated that drug treatment significantly (i) decreased epithelial-to-mesenchymal transition, (ii) reduced activity of prometastatic/proinflammatory transcription factors (GATA-1, GATA-2, early-growth-response-3/EGR3, signal transducer and activator of transcription-3/STAT-3), and (iii) decreased tumor-infiltrating monocytes while increasing tumor-infiltrating B cells. Drug treatment also significantly abrogated presurgical increases in serum IL6 and C-reactive protein levels, abrogated perioperative declines in stimulated IL12 and IFNγ production, abrogated postoperative mobilization of CD16- "classical" monocytes, and enhanced expression of CD11a on circulating natural killer cells.Conclusions: Perioperative inhibition of COX-2 and β-adrenergic signaling provides a safe and effective strategy for inhibiting multiple cellular and molecular pathways related to metastasis and disease recurrence in early-stage breast cancer. Clin Cancer Res; 23(16); 4651-61. ©2017 AACR.

Egr2 and 3 Inhibit T-bet-Mediated IFN-γ Production in T Cells.

T-bet is important for differentiation of cytotoxic CD8 and Th1 CD4 T cells. We have discovered that Egr2 and 3 are potent inhibitors of T-bet function in CD4 and CD8 effector T cells. Egr2 and 3 were essential to suppress Th1 differentiation in Th2 and Th17 conditions in vitro and also to control IFN-γ-producing CD4 and CD8 T cells in response to virus infection. Together with Egr2 and 3, T-bet is induced in naive T cells by Ag stimulation, but Egr2 and 3 expression was inhibited by Th1-inducing cytokines. We found that Egr2 and 3 physically interact with the T-box domain of T-bet, blocking T-bet DNA binding and inhibiting T-bet-mediated production of IFN-γ. Thus, Egr2 and 3 are antagonists of T-bet function in effector T cells and are important for the control of inflammatory responses of T cells.

Taxotere-induced elevated expression of IL8 in carcinoma-associated fibroblasts of breast invasive ductal cancer.

Breast cancer is the most common malignant tumor in women worldwide, and accounts for an estimated 29% of new cases and 15% of cancer-associated mortalities each year. Invasive ductal carcinoma represents 70-80% of all breast cancer cases, which are responsible for the majority of breast cancer fatalities. Though great progress has been made in understanding the tumorigenesis and development of breast cancer, problems surrounding treatment persist. It was previously reported that carcinoma-associated fibroblasts (CAFs) may be closely associated with chemotherapy resistance. In the present study, primary-cultured CAFs from surgically resected breast invasive ductal cancer tissues were prepared and tested to clarify the change of gene expression profile following treatment with 20 ng/ml Taxotere® for 24 h through microarray analysis. In addition, quantitative polymerase chain reaction and western blotting were performed to compare the gene and protein expression of the candidate gene in CAFs prior to and following Taxotere treatment. Based on the obtained data, 35 differentially expressed genes were identified, including ACTA2, ACTC1, ACTG, ALDH1B1, AMY1A, C5orf13, CNN1, CXCR7, DDAH1, FGF1, PDLIM3, MAMLD1, MYH11, OXTR, PDLIM5, RARRES1, SERPINA3, TRIL, C14orf43, C1orf51, CXCL12, CXCL2, EGR2, EGR3, IER3, interleukin (IL)8, IRF1, JUNB, MMP1, NAV2, NFKBIA, NFKBIZ, TRIB1, WNT16 and ZC3H12A. It was observed that the expression of the candidate gene IL8 in the CAFs of breast invasive cancer following treatment with Taxotere was increased (P<0.05). Overall, elevated expression of IL8 induced by Taxotere in CAFs potentially supports the association between IL8 and chemotherapy response.

Analysis of gene expression pattern in peripheral blood leukocytes during experimental heat wave.

The conditions of Moscow 2010 summer heat wave were simulated in an accommodation module. Six healthy men aged from 22 to 46 years stayed in the module for 30 days. Measurements of gene expression in peripheral blood leukocytes before, during and 3 day after simulated heat wave were performed using qRT-PCR. We observed a shift in the expression level of certain genes after heat exposure for a long time, and rapid return to the initial level, when volunteers leaved the accommodation module. Eight genes were chosen to form the "heat expression signature". EGR2, EGR3 were upregulated in all six volunteers, EGR1, SIRT1, CYP51A1, MAPK9, BAG5, MNDA were upregulated in 5 volunteers.

Nab2 maintains thymus cellularity with aging and stress.

Thymic cellularity is influenced by a variety of biological and environmental factors, such as age and stress; however, little is known about the molecular genetic mechanisms that regulate this process. Immediate early genes of the Early growth response (Egr) family have critical roles in immune function and response to environmental stress. The transcription factors, Egr1, Egr2 and Egr3, play roles in the thymus and in peripheral T-cell activation. Nab2, which binds Egrs 1, 2, and 3 as a co-regulator of transcription, also regulates peripheral T-cell activation. However, a role for Nab2 in the thymus has not been reported. Using Nab2-deficient (KO) mice we found that male Nab2KO mice have reduced thymus size and decreased numbers of thymocytes, compared with age-matched wildtype (WT) mice. Furthermore, the number of thymocytes in Nab2KO males decreases more rapidly with age. This effect is sex-dependent as female Nab2KO mice show neither reduced thymocyte numbers nor accelerated thymocyte loss with age, compared to female WT littermates. Since stress induces expression of Nab2 and the Egrs, we examined whether loss of Nab2 alters stress-induced decrease in thymic cellularity. Restraint stress induced a significant decrease in thymic cellularity in Nab2KO and WT mice, with significant changes in the thymocyte subset populations only in the Nab2KO mice. Stress reduced the percentage of DP cells by half and increased the percentage of CD4SP and CD8SP cells by roughly three-fold in Nab2KO mice. These findings indicate a requirement for Nab2 in maintaining thymocyte number in male mice with age and in response to stress.

DNA methylation analysis of the EGR3 gene in patients of schizophrenia.

DNA methylation has been implicated in the pathogenesis of schizophrenia. EGR3 is considered as a potential candidate gene for schizophrenia. We conducted in vitro DNA methylation reaction, Lucia luciferase activity assay, and pyrosequencing assay to assess the DNA methylation of the EGR3 expression underlying the pathophysiology of schizophrenia. We found that DNA methylation of the putative EGR3 regulatory regions attenuated Lucia luciferase activity. There was no difference in the DNA methylation pattern of EGR3 between in 50 schizophrenic patients and 47 controls. Our data suggest that DNA methylation regulated the expression of EGR3 might not be associated with schizophrenia.

Early growth response 3 inhibits growth of hepatocellular carcinoma cells via upregulation of Fas ligand.

Hepatocellular carcinoma (HCC) is a prevalent malignancy with aggressive biological behavior and poor prognosis. Early growth response 3 (EGR3) is a zinc finger transcription factor, and has been studied primarily in the context of neurodevelopment, autoimmunity, inflammation and angiogenesis. Accumulating evidence indicates that EGR3 is a novel suppressor gene of tumor initiation and progression in certain cancer events, but little work has been carried out in exploring the relationship between EGR3 and HCC growth. The purpose of this study was to investigate the possible effects of EGR3 on cell proliferation and apoptosis in HCC, and determine the underlying mechanisms. Here, we observed that EGR3 expression was frequently downregulated in HCC tissues and cell lines. Ectopic expression of EGR3 contributed to cell proliferation inhibition and apoptosis induction in HCC cells in vitro. Furthermore, the expression of Fas ligand (FasL) was significantly enhanced following upregulation of EGR3 in HCC cells, accompanied by an obvious increase of pro-apoptotic Bak and cell cycle inhibitor p21 expression. Based on nude mouse models, we demonstrated that ectopic expression of EGR3 markedly restricted tumor growth, and the expression of FasL was significantly increased in the xenograft tumor tissues which exhibited high EGR3 expression. We further established a co-transfection in HCC cells with EGR3 overexpression plasmid and FasL siRNA. We found that silencing of FasL gene impeded the anti-proliferative and pro-apoptotic effects, as well as the increase of Bak and p21 expression, suggesting an essential role of FasL in EGR3-mediated growth suppression in HCC cells. Collectively, in conclusion, EGR3 contributes to cell growth inhibition via upregulation of FasL in HCC.

Involvement of microRNA-718, a new regulator of EGR3, in regulation of malignant phenotype of HCC cells.

Hepatocellular carcinoma (HCC) is still one of the most common death-related malignancies worldwide. Because the way onset and progression are hidden most, HCC diagnoses are made at an advanced stage, when they are unsuitable for surgical resection. MicroRNAs are a class of small non-coding RNAs, participating in many aspects of cancers. In this study, we tried to establish the role of microRNA-718 (miR-718) in the malignant phenotype of HCC cells and its possible role in HCC diagnosis.

Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep.

Comprehensive tissue-specific gene set enrichment analysis and transcription factor analysis of breast cancer by integrating 14 gene expression datasets.

Breast cancer is the most commonly diagnosed malignancy in women. Several key genes and pathways have been proven to correlate with breast cancer pathology. This study sought to explore the differences in key transcription factors (TFs), transcriptional regulation networks and dysregulated pathways in different tissues in breast cancer. We employed 14 breast cancer datasets from NCBI-GEO and performed an integrated analysis in three different tissues including breast, blood and saliva. The results showed that there were eight genes (CEBPD, EGR1, EGR2, EGR3, FOS, FOSB, ID1 and NFIL3) down-regulated in breast tissue but up-regulated in blood tissue. Furthermore, we identified several unreported tissue-specific TFs that may contribute to breast cancer, including ATOH8, DMRT2, TBX15 and ZNF367. The dysregulation of these TFs damaged lipid metabolism, development, cell adhesion, proliferation, differentiation and metastasis processes. Among these pathways, the breast tissue showed the most serious impairment and the blood tissue showed a relatively moderate damage, whereas the saliva tissue was almost unaffected. This study could be helpful for future biomarker discovery, drug design, and therapeutic and predictive applications in breast cancers.

Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 Control Microtubule Stability, Plant Growth, and Drought Response.

Plant growth is coordinated with environmental factors, including water availability during times of drought. Microtubules influence cell expansion; however, the mechanisms by which environmental signals impinge upon microtubule organization and whether microtubule-related factors limit growth during drought remains unclear. We found that three Clade E Growth-Regulating (EGR) Type 2C protein phosphatases act as negative growth regulators to restrain growth during drought. Quantitative phosphoproteomics indicated that EGRs target cytoskeleton and plasma membrane-associated proteins. Of these, Microtubule-Associated Stress Protein 1 (MASP1), an uncharacterized protein, increased in abundance during stress treatment and could bind, bundle, and stabilize microtubules in vitro. MASP1 overexpression enhanced growth, in vivo microtubule stability, and recovery of microtubule organization during drought acclimation. These MASP1 functions in vivo were dependent on phosphorylation of a single serine. For all EGR and MASP1 mutants and transgenic lines examined, enhanced microtubule recovery and stability were associated with increased growth during drought stress. The EGR-MASP1 system selectively regulates microtubule recovery and stability to adjust plant growth and cell expansion in response to changing environmental conditions. Modification of EGR-MASP1 signaling may be useful to circumvent negative growth regulation limiting plant productivity. EGRs are likely to regulate additional proteins involved in microtubule stability and stress signaling.

Expression of Egr3 in mouse gonads and its localization and function in oocytes.

The early growth response (Egr) family consists of four members (Egr1, Egr2, Egr3, and Egr4) that are zinc finger transcription factors. Among them, Egr3 is involved in transcriptional regulation of target genes during muscle spindle formation and neurite outgrowth. We previously showed that the immunoreactive Egr3 is localized on oocyte spindle and accumulate near the microtubule organizing center during meiosis I in mice. Egr3 was also shown to be localized on spermatocytes. We herein investigated if Egr3 is expressed in mouse gonads and if Egr3 blockade results in any defect in oocyte maturation.

A Role for Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α in Nucleus Accumbens Neuron Subtypes in Cocaine Action.

Molecules critically involved in cocaine behavioral plasticity are known to regulate and interact with peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In addition, the PGC-1α promoter has binding sites for early growth response 3 (Egr3), which plays a dynamic role in cocaine action in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 (D1-MSN) versus D2 (D2-MSN). However, the role of PGC-1α in NAc in cocaine action is unknown.

Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production.

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by multiorgan inflammation induced by autoantibodies. Early growth response gene 2 (Egr2), a transcription factor essential for T-cell anergy induction, controls systemic autoimmunity in mice and humans. We have previously identified a subpopulation of CD4+ regulatory T cells, CD4+CD25-LAG3+ cells, that characteristically express both Egr2 and LAG3 and control mice model of lupus via TGF-β3 production. However, due to the mild phenotype of lymphocyte-specific Egr2-deficient mice, the presence of an additional regulator has been speculated. Here, we show that Egr2 and Egr3 expressed in T cells cooperatively prevent humoral immune responses by supporting TGF-β3 secretion. T cell-specific Egr2/Egr3 double-deficient (Egr2/3DKO) mice spontaneously developed an early onset lupus-like disease that was more severe than in T cell-specific Egr2-deficient mice. In accordance with the observation that CD4+CD25-LAG3+ cells from Egr2/3DKO mice completely lost the capacity to produce TGF-β3, the excessive germinal center reaction in Egr2/3DKO mice was suppressed by the adoptive transfer of WT CD4+CD25-LAG3+ cells or treatment with a TGF-β3-expressing vector. Intriguingly, latent TGF-β binding protein (Ltbp)3 expression maintained by Egr2 and Egr3 was required for TGF-β3 production from CD4+CD25-LAG3+ cells. Because Egr2 and Egr3 did not demonstrate cell intrinsic suppression of the development of follicular helper T cells, Egr2- and Egr3-dependent TGF-β3 production by CD4+CD25-LAG3+ cells is critical for controlling excessive B-cell responses. The unique attributes of Egr2/Egr3 in T cells may provide an opportunity for developing novel therapeutics for autoantibody-mediated diseases including SLE.