A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Glucocorticoid receptor - Top 30 Publications

Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice.

Overtraining (OT) may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down) protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β), IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume), but performed in uphill (OTR/up) and without inclination (OTR). Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR) and glucocorticoid receptor (GR) expressions. For extensor digitorum longus (EDL), OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters.

Selective Glucocorticoid Receptor Properties of GSK866 Analogs with Cysteine Reactive Warheads.

Synthetic glucocorticoids (GC) are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR) agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD) bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD) coregulator interaction profiling of the GR-LBD bound to GSK866 or its covalently binding analogs UAMC-1217 or UAMC-1218 revealed subtle conformational differences that might underlie their SEGRA properties. Altogether, GSK866 analogs UAMC-1217 and UAMC-1218 hold promise as a novel class of covalent-binding SEGRA ligands for the treatment of topical inflammatory skin disorders.

Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart.

Genetic mutations in the human small heat shock protein αB-crystallin have been implicated in autosomal cataracts and skeletal myopathies, including heart muscle diseases (cardiomyopathy). While these mutations lead to modulation of their chaperone activity in vitro, the in vivo functions of αB-crystallin in the maintenance of both lens transparency and muscle integrity remain unclear. This lack of information has hindered a mechanistic understanding of these diseases. To better define the functional roles of αB-crystallin, we generated loss-of-function zebrafish mutant lines by utilizing CRISPR/Cas9 system to specifically disrupt the two αB-crystallin genes, αBa and αBb We observed lens abnormalities in the mutant lines of both genes and the penetrance of the lens phenotype was higher in αBa than αBb mutants. This finding is in contrast with the lack of a phenotype previously reported in αB-crystallin knockout mice and suggest that the elevated chaperone activity of the two zebrafish orthologs is critical for lens development. Besides its key role in the lens, we uncovered another critical role for αB-crystallin in providing stress tolerance to the heart. The αB-crystallin mutants exhibited hypersusceptibility to develop pericardial edema when challenged by crowding stress or exposed to elevated cortisol stress, both of which activate glucocorticoid receptor signaling. Our work illuminates the involvement of αB-crystallin in stress tolerance of the heart presumably through the proteostasis network, and reinforces the critical role of the chaperone activity of αB-crystallin in the maintenance of lens transparency.

Therapeutic Mechanisms of Glucocorticoids.

Glucocorticoids (GCs) have been used clinically for decades as potent anti-inflammatory and immunosuppressive agents. Nevertheless, their use is severely hampered by the risk of developing side effects and the occurrence of glucocorticoid resistance (GCR). Therefore, efforts to understand the complex mechanisms underlying GC function and GCR are ongoing. The goal is to generate new glucocorticoid receptor (GR) ligands that can dissociate anti-inflammatory from metabolic side effects and/or overcome GCR. In this review paper we discuss recent insights into GR-mediated actions in GCR and novel therapeutic strategies for acute and chronic inflammatory diseases.

Methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), in maltreated and nonmaltreated children: Associations with behavioral undercontrol, emotional lability/negativity, and externalizing and internalizing symptoms.

The present study examined the effect of various dimensions of child maltreatment (i.e., developmental timing of maltreatment, number of maltreatment subtypes, and chronicity of maltreatment) on methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), and investigated the associations between NR3C1 methylation and child outcomes. Participants included 534 children who attended a research summer camp program for school-aged maltreated (53.4%) and nonmaltreated (46.6%) children from low socioeconomic backgrounds. Results show that children with early onset maltreatment evidence significant hypermethylation compared to nonmaltreated children. Moreover, more maltreatment subtypes experienced and more chronic maltreatment are both related to greater NR3C1 hypermethylation. Findings also indicate that hypermethylation of NR3C1 is linked with a number of negative child outcomes including greater emotional lability-negativity, higher levels of ego undercontrol, more externalizing behavior, and greater depressive symptoms. Together, results highlight the role of methylation of NR3C1 in the effects of child maltreatment on the development of emotion dysregulation and psychopathology.

Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early development: The role of child maltreatment.

Epigenetics processes may play a vital role in the biological embedding of early environmental adversity and the development of psychopathology. Accumulating evidence suggests that maltreatment is linked to methylation of the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), which is a key regulator of the hypothalamus-pituitary-adrenal axis. However, prior work has been exclusively cross-sectional, greatly constraining our understanding of stress-related epigenetic processes over time. In the current study, we examined the effect of maltreatment and other adversity on change in NR3C1 methylation among at-risk preschoolers to begin to characterize within-child epigenetic changes during this sensitive developmental period. Participants were 260 preschoolers (3-5 years old, 53.8% female), including 51.5% with moderate to severe maltreatment in the past 6 months. Child protection records, semistructured interviews, and parent reports were used to assess child stress exposure. Methylation of exons 1D and 1F of NR3C1 via saliva DNA were measured at two time points approximately 6 months apart. Results indicate that maltreated children evidence higher baseline levels of NR3C1 methylation, significant decreases in methylation over time, and then at follow-up, lower levels of methylation, relative to nonmaltreated preschoolers. Findings from the current study highlight the complex nature of stress-related epigenetic processes during early development.

Epigenetic correlates of neonatal contact in humans.

Animal models of early postnatal mother-infant interactions have highlighted the importance of tactile contact for biobehavioral outcomes via the modification of DNA methylation (DNAm). The role of normative variation in contact in early human development has yet to be explored. In an effort to translate the animal work on tactile contact to humans, we applied a naturalistic daily diary strategy to assess the link between maternal contact with infants and epigenetic signatures in children 4-5 years later, with respect to multiple levels of child-level factors, including genetic variation and infant distress. We first investigated DNAm at four candidate genes: the glucocorticoid receptor gene, nuclear receptor subfamily 3, group C, member 1 (NR3C1), μ-opioid receptor M1 (OPRM1) and oxytocin receptor (OXTR; related to the neurobiology of social bonds), and brain-derived neurotrophic factor (BDNF; involved in postnatal plasticity). Although no candidate gene DNAm sites significantly associated with early postnatal contact, when we next examined DNAm across the genome, differentially methylated regions were identified between high and low contact groups. Using a different application of epigenomic information, we also quantified epigenetic age, and report that for infants who received low contact from caregivers, greater infant distress was associated with younger epigenetic age. These results suggested that early postnatal contact has lasting associations with child biology.

Proteins acting out of (dis)order.

A disordered region at the N-terminus of the glucocorticoid receptor can fine tune how cells respond to a hormone via an allosteric mechanism.

Regulatory effects of dexamethasone on NK and T cell immunity.

Glucocorticoids (GCs) act via the intracellular glucocorticoid receptor (GR), which can regulate the expression of target genes. With regard to the immune system, GCs may affect both innate and adaptive immunity. Our study analyzed the immunoregulatory effects of dexamethasone (Dex) treatment on splenic T, Treg, NK and NKT cells by treating C57Bl6 mice with various doses of Dex. We observed that treatment with Dex decreased the number of NK cells in the spleen and suppressed their activity. In particular, the expression of both Ly49G and NKG2D receptors was decreased by Dex. However, Dex did not affect the population of NKT cells. With regard to splenic T cells, our results show a dose-dependent reduction in CD3(+), CD4(+), CD8(+), CD44(+) and CD8(+)CD122(+) T cells, but a stimulatory effect on CD4(+)CD25(+) regulatory T cells by Dex treatment. In addition, treatment with Dex suppressed anti-tumor immune response in a mouse EG7 tumor model. We conclude that Dex may suppress both T- and NK-mediated immunity.

The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved anti-androgen therapy.

The major obstacle in the management of advanced prostate cancer (PCa) is the occurrence of resistance to endocrine-therapy. Although the androgen receptor (AR) has been linked to therapy failure, the underlying escape mechanisms have not been fully clarified. Being closely related to the AR, the glucocorticoid receptor (GR) has been suggested to play a role in enzalutamide and docetaxel resistance. Given that glucocorticoids are frequently applied to PCa patients, it is essential to unravel the exact role of the GR in PCa progression.

Topical mevastatin promotes wound healing by inhibiting the transcription factor c-Myc via the glucocorticoid receptor and the long noncoding RNA Gas5.

Diabetic foot ulcers (DFU), a life-threatening complication of diabetes mellitus, have limited treatment options, often resulting in amputations. HMG-CoA reductase inhibitors such as statins are cholesterol-reducing agents that may provide a new therapeutic option. Statins target the cholesterol pathway and block the synthesis of the wound-healing inhibitors farnesyl pyrophosphate (FPP) and cortisol, ligands for the glucocorticoid receptor (GR). Here we demonstrate that the naturally occurring statin, mevastatin, reverses FPP's effects and promotes healing by using in vitro wound healing assays, human ex vivo and porcine in vivo wound models, and DFU tissue. Moreover, we measured cortisol levels by ELISA and found mevastatin inhibited cortisol synthesis in keratinocytes and biopsies from patients with DFU. Of note, topical mevastatin stimulated epithelialization and angiogenesis in vivo. Mevastatin also reversed FPP-mediated induction of the GR target, the transcription factor c-Myc (a biomarker of nonhealing wounds) in porcine and human wound models. Importantly, mevastatin reversed c-Myc overexpression in DFUs. It induced expression of the long noncoding (lnc)-RNA Gas5 that blocks c-Myc expression, which was confirmed by overexpression studies. We conclude that topical mevastatin accelerates wound closure by promoting epithelialization via multiple mechanisms: modulation of GR ligands and induction of the lnc-RNA Gas5, leading to c-Myc inhibition. In light of these findings, we propose that repurposing statin drugs for topical treatment of DFUs may offer another option for managing this serious condition.

Patterns of calcium signaling: A link between chronic emotions and cancer.

Intra and inter-cellular calcium signaling is present in all types of cells and body tissues. In the human brain, calcium currents and waves are related to mental activities, including emotions. We present a theoretical interpretation of these phenomena suggesting their involvement in chronic emotional patterns and in the pathology of cancer. Recent developments on biophysics, translational biology and psychoneuroendocrinoimmunology (PNEI) can support explanatory hypotheses about the link between emotional stresses and the origin and development of different types of tumor cells. Chronic stresses may cause perturbations of rhythms of the PNEI system, excessive activation of HPA axis and abnormal activation of calcium signals in somatic tissues, with deleterious effects on different parts of the body. The increasing of calcium signaling inside cells may lead to a deregulation of different pathways and epigenetic systems that promote the production of genomic mutations in a second phase. In particular, the hyperactivation of the transcription nuclear factor kappaB (NF-κB), if is not counterbalanced by the following activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2), increases the production of oxidative catabolites, as the advanced glycation end products (AGE), which play a key role in the progression of different types of cancer and other degenerative diseases. Cortisol binding to glucocorticoid receptor (GR) reduces the activity of both NF-κB and Nrf2 inside the cells but inhibits the cellular immunity and the anabolic processes of tissue regeneration. The tissue atrophy and the defective anti-ageing mechanisms promotes the tumoral cells growth and their escape from the immune-surveillance.

Investigation of glucocorticoid receptor and calpain-10 gene polymorphisms in Turkish patients with type 2 diabetes mellitus

Background/aim: We proposed to investigate the role of calpain-10 (CAPN10) gene single nucleotide polymorphism (SNP)-19 and SNP-44 and glucocorticoid receptor (NR3C1) gene N363S polymorphisms in Turkish patients with type 2 diabetes mellitus (T2DM).Materials and methods: Peripheral blood samples were obtained from 125 patients with T2DM and 112 healthy volunteers. Genotyping was carried out by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: There were no statistically significant differences found between the allele and genotype frequencies of CAPN10 SNP-19, CAPN10 SNP-44, and NR3C1 N363S polymorphisms and T2DM development (P > 0.05). The CAPN10 SNP-19 del-allele, CAPN10 SNP-44 C-allele, and NR3C1 N363S G-allele were determined to be risk factors for T2DM development. In T2DM patients an association was identified between the CAPN10 SNP-19 del-allele, homozygous del/del genotype, SNP-44 C-allele, heterozygous TC genotype, NR3C1 N363S G-allele, heterozygous AG genotype, and increased BMI. Conclusion: The present study demonstrates that the SNP-44 polymorphism is associated with T2DM susceptibility and contributes to the risk of T2DM.

Primary aldosteronism patients show skin alterations and abnormal activation of glucocorticoid receptor in keratinocytes.

Primary aldosteronism (PA) is a disease characterized by high aldosterone levels caused by benign adrenal tumors being the most frequent cause of secondary hypertension. Aldosterone plays vital physiological roles through the mineralocorticoid receptor (MR) but in certain cell types, it can also activate the glucocorticoid (GC) receptor (GR). Both MR and GR are structurally and functionally related and belong to the same family of ligand-dependent transcription factors that recognize identical GC regulatory elements (GREs) on their target genes. GCs play key roles in skin pathophysiology acting through both GR and MR; however, the effects of aldosterone and the potential association of PA and skin disease were not previously addressed. Skin samples from PA revealed histopathological alterations relative to control subjects, featuring epidermal hyperplasia, impaired differentiation, and increased dermal infiltrates, correlating with increased NF-κB signaling and up-regulation of TNF-A and IL-6 cytokines. PA skin samples also showed significantly higher expression of MR, GR, and HSD11B2. In cultured keratinocytes, aldosterone treatment increased GRE transcriptional activity which was significantly inhibited by co-treatment with GR- and MR-antagonists. This study demonstrates that high levels of aldosterone in PA patients correlate with skin anomalies and inflammatory features associated with abnormal GR/MR activation in epidermal keratinocytes.

Erratum. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition. Diabetes 2017;66:272-286.

Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium.

Volatile oils from Artemisiae argyi folium (VOAAF) is reported with hepatotoxicity, but the underlying mechanism is still unclear.

Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1) and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr), the Kruppel-like factors (Klf), and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1), resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

Host resistance to endotoxic shock requires the neuroendocrine regulation of group 1 innate lymphoid cells.

Upon infection, the immune system produces inflammatory mediators important for pathogen clearance. However, inflammation can also have deleterious effect on the host and is tightly regulated. Immune system-derived cytokines stimulate the hypothalamic-pituitary-adrenal (HPA) axis, triggering endogenous glucocorticoid production. Through interaction with ubiquitously expressed glucocorticoid receptors (GRs), this steroid hormone has pleiotropic effects on many cell types. Using a genetic mouse model in which the gene encoding the GR is selectively deleted in NKp46(+) innate lymphoid cells (ILCs), we demonstrated a major role for the HPA pathway in host resistance to endotoxin-induced septic shock. GR expression in group 1 ILCs is required to limit their IFN-γ production, thereby allowing the development of IL-10-dependent tolerance to endotoxin. These findings suggest that neuroendocrine axes are crucial for tolerization of the innate immune system to microbial endotoxin exposure through direct corticosterone-mediated effects on NKp46-expressing innate cells, revealing a novel strategy of host protection from immunopathology.

Research progress on rhinitis medicamentosa.

Rhinitis medicamentosa (RM) refers to nonallergic inflammation in the nasal mucosa which is caused by the abuse of nasal decongestant and it often occurs in patients with allergic/nonallergic rhinitis along with nasal congestion. RM is characterized by nasal congestion based on long-term use of nasal decongestant, without rhinorrhoea or sneezing. The signs of RM include nasal swelling, thickening, loss of elasticity, and loss of sensitivity to the decongestant. The histological changes of RM are loss of nasal mucosa cilia, squamous epithelium metaplasia, edema of epithelium cell, hyperplasia of goblet cell, increased expression of epidermal growth factor receptor and infiltration of inflammatory cells, etc. There is no precise diagnosis standard for RM, making it even harder for its objective diagnosis. Patients with RM should immediately stop using nasal decongestant, in stead of using nasal glucocorticoid spray for the recovery of the nasal mucosa's function.

Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer.

The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an "on/off switch" mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer.

11β-Hydroxysteroid Dehydrogenases and Hypertension in the Metabolic Syndrome.

The metabolic syndrome describes a clustering of risk factors-visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension-that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25-30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.

UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

Environmental Manipulations as an Effective Alternative Treatment to Reduce Endometriosis Progression.

Treatments for endometriosis include pharmacological or surgical procedures that produce significant side effects. We aimed to determine how environmental enrichment (EE) could impact the progression of endometriosis using the autotransplantation rat model. Female rats were exposed to EE (endo-EE: toys and nesting materials, 4 rats per cage, larger area enclosure) or no enrichment (endo-NE: 2 rats per cage) starting on postnatal day 21. After 8 weeks, sham surgery or surgical endometriosis was induced by suturing uterine horn tissue next to the intestinal mesentery, then allowed to progress for 60 days during which EE or NE continued. At the time of killing, we measured anxiety behaviors, collected endometriotic vesicles and uterus, and processed for quantitative real-time polymerase chain reaction for corticotropin-releasing hormone (CRH), urocortin-1, CRH receptors type 1 and type 2, and glucocorticoid receptor (GR). Endometriosis did not affect anxiety-like behaviors, yet rats in enriched conditions showed lower basal anxiety behaviors than the nonenriched group. Importantly, the endo-EE group showed a 28% reduction in the number of endometriosis vesicles and the vesicles were significantly smaller compared to the endo-NE group. Endometriosis increased CRH and GR only in the vesicles of endo-NE, and this increase was dampened in the endo-EE. However, urocortin 1 was increased in the vesicles of the endo-EE group, suggesting different pathways of activation of CRH receptors in this group. Our results suggest that the use of multimodal complementary therapies that reduce stress in endometriosis could be an effective and safe treatment alternative, with minimal side effects.

Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System.

Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.

Site-specific phosphorylation regulates the structure and function of an intrinsically disordered domain of the glucocorticoid receptor.

Intrinsically disordered (ID) regions of the transcription factor proteins have much larger frequency of phosphorylation sites than ordered regions, suggesting an important role in their regulatory capacity. Consistent with this phenomenon, most of the functionally known phosphorylation sites in the steroid receptor family of transcription factors are located in the ID N-terminal domain that contains a powerful activation function (AF1) region. In this study, we determined the structural and functional consequences of functionally known phosphorylation residues (Ser203, 211, and 226) located in the human glucocorticoid receptor's (GR's) ID AF1 domain. We report the relative importance of each phosphorylation site in inducing a functionally active ordered conformation in GR's ID AF1 domain. Our data demonstrate a mechanism through which ID domain of the steroid receptors and other similar transcription factors may adopt a functionally active conformation under physiological conditions.

Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner.

Our previous studies suggest that prenatal arsenic exposure (50ppb) modifies epigenetic control of the programming of the glucocorticoid receptor (GR) signaling system in the developing mouse brain. These deficits may lead to long-lasting consequences, including deficits in learning and memory, increased depressive-like behaviors, and an altered set-point of GR feedback throughout life. To understand the arsenic-induced changes within the GR system, we assessed the impact of in utero arsenic exposure on the levels of the GR and growth arrest-specific-5 (Gas5), a noncoding RNA, across a key gestational period for GR programming (gestational days, GD 14-18) in mice. Gas5 contains a glucocorticoid response element (GRE)-like sequence that binds the GR, thereby decreasing GR-GRE-dependent gene transcription and potentially altering GR programming. Prenatal arsenic exposure resulted in sex-dependent and age-dependent shifts in the levels of GR and Gas5 expression in fetal telencephalon. Nuclear GR levels were reduced in males, but unchanged in females, at all gestational time points tested. Total cellular Gas5 levels were lower in arsenic-exposed males with no changes seen in arsenic-exposed females at GD16 and 18. An increase in total cellular Gas-5 along with increased nuclear levels in GD14 arsenic-exposed females, suggests a differential regulation of cellular compartmentalization of Gas5. RIP assays revealed reduced Gas5 associated with the GR on GD14 in the nuclear fraction prepared from arsenic-exposed males and females. This decrease in levels of GR-Gas5 binding continued only in the females at GD18. Thus, nuclear GR signaling potential is decreased in prenatal arsenic-exposed males, while it is increased or maintained at levels approaching normal in prenatal arsenic-exposed females. These findings suggest that females, but not males, exposed to arsenic are able to regulate the levels of nuclear free GR by altering Gas5 levels, thereby keeping GR nuclear signaling closer to control (unexposed) levels.

Glucocorticoid receptor signaling in the eye.

Glucocorticoids (GCs) are essential steroid hormones that regulate numerous metabolic and homeostatic functions in almost all physiological systems. Synthetic glucocorticoids are among the most commonly prescribed drugs for the treatment of various conditions including autoimmune, allergic and inflammatory diseases. Glucocorticoids are mainly used for their potent anti-inflammatory and immunosuppressive activities mediated through signal transduction by their nuclear receptor, the glucocorticoid receptor (GR). Emerging evidence showing that diverse physiological and therapeutic actions of glucocorticoids are tissue-, cell-, and sex-specific, suggests more complex actions of glucocorticoids than previously anticipated. While several synthetic glucocorticoids are widely used in the ophthalmology clinic for the treatment of several ocular diseases, little is yet known about the mechanism of glucocorticoid signaling in different layers of the eye. GR has been shown to be expressed in different cell types of the eye such as cornea, lens, and retina, suggesting an important role of GR signaling in the physiology of these ocular tissues. In this review, we provide an update on the recent findings from in vitro and in vivo studies reported in the last 5 years that aim at understanding the role of GR signaling specifically in the eye. Advances in studying the physiological effects of glucocorticoids in the eye are vital for the elaboration of optimized and targeted GC therapies with potent anti-inflammatory potential while minimizing adverse effects.

A proteomic investigation into mechanisms underpinning corticosteroid effects on neural stem cells.

Corticosteroids (CSs) are widely used clinically, for example in pediatric respiratory distress syndrome, and immunosuppression to prevent rejection of stem cell transplant populations in neural cell therapy. However, such treatment can be associated with adverse effects such as impaired neurogenesis and myelination, and increased risk of cerebral palsy. There is increasing evidence that CSs can adversely influence key biological properties of neural stem cells (NSCs) but the molecular mechanisms underpinning such effects are largely unknown. This is an important issue to address given the key roles NSCs play during brain development and as transplant cells for regenerative neurology. Here, we describe the use of label-free quantitative proteomics in conjunction with histological analyses to study CS effects on NSCs at the cellular and molecular levels, following treatment with methylprednisolone (MPRED). Immunocytochemical staining showed that both parent NSCs and newly generated daughter cells expressed the glucocorticoid receptor, with nuclear localisation of the receptor induced by MPRED treatment. MPRED markedly decreased NSC proliferation and neuronal differentiation while accelerating the maturation of oligodendrocytes, without concomitant effects on cell viability and apoptosis. Parallel proteomic analysis revealed that MPRED induced downregulation of growth associated protein 43 and matrix metallopeptidase 16 with upregulation of the cytochrome P450 family 51 subfamily A member 1. Our findings support the hypothesis that some neurological deficits associated with CS use may be mediated via effects on NSCs, and highlight putative target mechanisms underpinning such effects.

Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid.

Several recent studies have suggested that compounds known as endocrine disrupting chemicals (EDCs) can promote obesity by serving as ligands for nuclear receptors, including the peroxisome proliferator-activated receptor γ (PPARγ) and the glucocorticoid receptor (GR). Thiazolidinedione insulin sensitizers, which act as ligands for PPARγ, also interact with and regulate the activity of the mitochondrial pyruvate carrier (MPC). We evaluated whether several EDCs might also affect MPC activity. Most of the EDCs evaluated did not acutely affect pyruvate metabolism. However, the putative endocrine disruptors tributyltin (TBT) and tolylfluanid (TF) acutely and markedly suppressed pyruvate metabolism in isolated mitochondria. Using mitochondria isolated from brown adipose tissue in mice with adipocyte-specific deletion of the MPC2 protein, we determined that the effect of TF on pyruvate metabolism required MPC2, while TBT did not. We attempted to determine whether the obesogenic effects of TF might involve MPC2 in adipose tissue. Surprisingly, however, we were unable to replicate the published effects of TF on weight gain and adipose tissue gene expression in wild-type or fat-specific MPC2 knockout mice. Treatment with TF modestly enhanced adipogenic gene expression in vitro, but had no effect on GR activation or phosphorylation in cultured cells. These data suggest that TF may affect mitochondrial pyruvate metabolism via the MPC complex, but also call into question whether this compound affects GR activity and is obesogenic in mice.

Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo.

Glucocorticoid hormone plays a major role in metabolism and disease. The hormone-bound glucocorticoid receptor (GR) binds to a specific set of enhancers in different cell types, resulting in unique patterns of gene expression. We have addressed the role of chromatin structure in GR binding by mapping nucleosome positions in mouse adenocarcinoma cells. Before hormone treatment, GR-enhancers exist in one of three chromatin states: (i) Nucleosome-depleted enhancers that are DNase I-hypersensitive, associated with the Brg1 chromatin remodeler and flanked by nucleosomes incorporating histone H2A.Z. (ii) Nucleosomal enhancers that are DNase I-hypersensitive, marked by H2A.Z and associated with Brg1. (iii) Nucleosomal enhancers that are inaccessible to DNase I, incorporate little or no H2A.Z and lack Brg1. Hormone-induced GR binding results in nucleosome shifts at all types of GR-enhancer, coinciding with increased recruitment of Brg1. We propose that nucleosome-depleted GR-enhancers are formed and maintained by other transcription factors which recruit Brg1 whereas, at nucleosomal enhancers, GR behaves like a pioneer factor, interacting with nucleosomal sites and recruiting Brg1 to remodel the chromatin.