PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Ovarian dysgenesis - Top 30 Publications

Increased psychiatric morbidity in women with complete androgen insensitivity syndrome or complete gonadal dysgenesis.

Knowledge concerning mental health outcomes is important to optimize the health of individuals with disorders or differences of sex development (DSD). Thus, the aim of this study was to estimate if the prevalence of psychiatric morbidity in adult women diagnosed with complete androgen insensitivity syndrome (CAIS) or complete gonadal dysgenesis (46,XY GD and 46,XX GD) differs from that in women with premature ovarian insufficiency (POI) or age-matched population controls.

Marfanoid habitus is a nonspecific feature of Perrault syndrome.

The objective of this study was to report the clinical and biological characteristics of two Perrault syndrome cases in a Moroccan family with homozygous variant c.1565C>A in the LARS2 gene and to establish genotype-phenotype correlation of patients with the same mutation by review of the literature. Whole-exome sequencing was performed. Data analysis was carried out and confirmed by Sanger sequencing and segregation. The affected siblings were diagnosed as having Perrault syndrome with sensorineural hearing loss at low frequencies; the female proband had primary amenorrhea and ovarian dysgenesis. Both affected individuals had a marfanoid habitus and no neurological features. Both patients carried the homozygous variant c.1565C>A; p.Thr522Asn in exon 13 of the LARS2 gene. This variant has already been reported as a homozygous variant in three other Perrault syndrome families. Both affected siblings of a Moroccan consanguineous family with LARS2 variants had low-frequency sensorineural hearing loss, marfanoid habitus, and primary ovarian insufficiency in the affected girl. According to the literature, this variant, c.1565C>A; p.Thr522Asn, can be correlated with low-frequency hearing loss. However, marfanoid habitus was been considered a nonspecific feature in Perrault syndrome, but we believe that it may be more specific than considered previously. This diagnosis allowed us to provide appropriate management to the patients and to provide more accurate genetic counseling to this family.

A homozygous missense variant in HSD17B4 identified in a consanguineous Chinese Han family with type II Perrault syndrome.

Perrault syndrome is a rare multisystem disorder that manifests with sensorineural hearing loss in both sexes, primary ovarian insufficiency in females and neurological features. The syndrome is heterogeneous both genetically and phenotypically.

Implications of the FMR1 Premutation for Children, Adolescents, Adults, and Their Families.

Given the nature of FMR1 gene expansions, most biological mothers, and often multiple other family members of children with fragile X syndrome (FXS), will have a premutation, which may increase individual and family vulnerabilities. This article summarizes important gaps in knowledge and notes potential implications for pediatric providers with regard to developmental and medical risks for children and adolescents with an FMR1 premutation, including possible implications into adulthood.

Modified human uterus transplantation using ovarian veins for venous drainage: the first report of surgically successful robotic-assisted uterus procurement and follow-up for 12 months.

To report the 12-month results of the first human uterus transplantation case using robot-assisted uterine retrieval. This type of transplantation may become a treatment for permanent uterine factor infertility.

45,X/46,XY ovotesticular disorder of sex development revisited: undifferentiated gonadal tissue may be mistaken as ovarian tissue.

The 45,X/46,XY karyotype has been associated with mixed gonadal dysgenesis (MGD) and ovotesticular disorder of sex development (DSD). Our aim was to revise the diagnosis of ovotesticular DSD in two patients in the context of a retrospective study of 45,X/46,XY subjects with genital ambiguity.

Valproic Acid in Women and Girls of Childbearing Age.

The aim of this paper is to evaluate recent literature on valproic acid (VPA) in women and girls of childbearing age and to emphasize new findings.

Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia.

The WD40-containing E3 ubiquitin ligase RFWD3 has been recently linked to the repair of DNA damage by homologous recombination (HR). Here we have shown that an RFWD3 mutation within the WD40 domain is connected to the genetic disease Fanconi anemia (FA). An individual presented with congenital abnormalities characteristic of FA. Cells from the patient carrying the compound heterozygous mutations c.205_206dupCC and c.1916T>A in RFWD3 showed increased sensitivity to DNA interstrand cross-linking agents in terms of increased chromosomal breakage, reduced survival, and cell cycle arrest in G2 phase. The cellular phenotype was mirrored in genetically engineered human and avian cells by inactivation of RFWD3 or introduction of the patient-derived missense mutation, and the phenotype was rescued by expression of wild-type RFWD3 protein. HR was disrupted in RFWD3-mutant cells as a result of impaired relocation of mutant RFWD3 to chromatin and defective physical interaction with replication protein A. Rfwd3 knockout mice appear to have increased embryonic lethality, are subfertile, show ovarian and testicular atrophy, and have a reduced lifespan resembling that of other FA mouse models. Although RFWD3 mutations have thus far been detected in a single child with FA, we propose RFWD3 as an FA gene, FANCW, supported by cellular paradigm systems and an animal model.

Cantú Syndrome Associated with Ovarian Agenesis.

Cantú syndrome is a very rare autosomal dominant disorder characterized by generalized congenital hypertrichosis, neonatal macrosomia, coarse face, cardiomegaly, and occasionally, skeletal abnormalities. The syndrome has been attributed to mutated ABCC9 or KCNJ8 genes. We present a 4-year-old girl with developmental delay, distinctive coarse facial features, and generalized hypertrichosis apparent since birth. The investigation revealed absent ovaries and a hypoplastic uterus which have not been previously described. Conventional karyotyping was normal. DNA sequencing analysis of the ABCC9 gene was performed, and a heterozygous point mutation c.3460C>T (p.Arg1154Trp) was revealed. This missense gain-of-function mutation was located in exon 27 of the ABCC9 gene and has been reported in patients with the full phenotype of Cantú syndrome. However, the absence of the ovaries could be an expansion of the phenotype and not attributed to mutations in other genes important for ovarian development. Unfortunately, it has not been proven so far if the ABCC9 gene is expressed in the ovarian tissue.

Laparoscopically Removed Streak Gonad Revealed Gonadoblastoma in Frasier Syndrome.

Frasier syndrome (FS) is characterized by gonadal dysgenesis and progressive nephropathy caused by mutation in the Wilm's tumor gene (WT1). We report a case of FS in which diagnosis was based on amenorrhea with nephropathy, and laparoscopically-removed streak gonad which revealed gonadoblastoma.

Mixed Gonadal Germ Cell Tumor Composed of a Spermatocytic Tumor-Like Component and Germinoma Arising in Gonadoblastoma in a Phenotypic Woman With a 46, XX Peripheral Karyotype: Report of the First Case.

We report a unique case of gonadal mixed germ cell tumor (GCT) composed of a predominantly spermatocytic tumor (ST)-like component and a minor component of germinoma arising in gonadoblastoma in a phenotypic woman with a 46, XX peripheral karotype. The patient was a 24-year-old woman (gravida 2, para 1) found to have a 7 cm pelvic mass during routine obstetric ultrasound examination at 20 weeks gestational age. She underwent a left salpingo-gonadectomy at gestational age 23 and 2/7 weeks. She recovered well and delivered a healthy baby at full term. The resected gonadal tumor measured 7.5 cm and microscopically was composed of 3 morphologically distinct components: gonadoblastoma (1%), germinoma (1%) and a ST-like component (98%). The ST-like component was composed of 3 populations of tumor cells: small cells, intermediate and large sized cells, similar to testicular ST. Scattered binucleated and multinucleated cells were present. Immunohistochemically the ST-like component was positive for pan-GCT markers SALL4 and LIN28 but with weaker staining than the germinoma. It was negative for OCT4 and TCL1. Only rare tumor cells were positive for SOX17. In contrast, the germinoma cells were diffusely and strongly positive for SALL4, LIN28, OCT4, SOX17, and TCL1. CD117 was positive in both the germinoma and ST-like component but with fewer tumor cells positive in the latter. Flurorescence in situ hybridization study demonstrated isochromosome 12p in the germinoma component but not in the gonadoblastoma and ST-like component. This patient did not receive further chemoradiation therapy after the surgery. She has been free of disease for 10 years and 1 month since her surgery. To our knowledge, this is the first case report of a ST-like GCT in a phenotypic female.

The BMP4-Smad signaling pathway regulates hyperandrogenism development in a female mouse model.

Polycystic ovary syndrome is a common endocrine disorder and a major cause of anovulatory sterility in women at reproductive age. Most patients with polycystic ovary syndrome have hyperandrogenism, caused by excess androgen synthesis. Bone morphogenetic protein 4 (BMP4) is an essential regulator of embryonic development and organ formation, and recent studies have also shown that BMP4 may be involved in female steroidogenesis process. However, the effect of BMP4 on hyperandrogenism remains unknown. Here, using a female mouse model of hyperandrogenism, we found that ovarian BMP4 levels were significantly decreased in hyperandrogenism. Elevated androgens inhibited BMP4 expression via activation of androgen receptors. Moreover, BMP4 treatment suppressed androgen synthesis in theca cells and promoted estrogen production in granulosa cells by regulating the expression of steroidogenic enzymes, including CYP11A, HSD3B2, CYP17A1, and CYP19A1 Consistently, knockdown of BMP4 augmented androgen levels and inhibited estrogen levels. Mechanistically, Smad signaling rather than the p38 MAPK pathway regulated androgen and estrogen formation, thereby mediating the effect of BMP4. Of note, BMP4-transgenic mice were protected against hyperandrogenism. Our observations clarify a vital role of BMP4 in controlling sex hormone levels and offer new insights into intervention for managing hyperandrogenism by targeting the BMP4-Smad signaling pathway.

Pollutants Induced Oxidative Stress, DNA Damage and Cellular Deformities in Clarias gariepinus (Burchell), from River Yamuna in Delhi Region, India.

The purpose of the present study was to evaluate the severity of pollution impact at two extreme sites of river Yamuna in Delhi region utilizing oxidative stress, genotoxic and histopathological biomarkers in gonad (ovary) of Clarias gariepinus. To evaluate oxidative stress, TBAR's and ferric reducing antioxidant power (FRAP) assay were employed while comet assay and classic histology were used to estimate genotoxicity and cellular damage respectively. The results indicated significant increase (p < 0.001) in TBARs level (µmol/g wet tissue); significant decrease (p < 0.001) in FRAP value (U/mg tissue), significant increase (p < 0.001) in DNA damage and extensive abnormal histoarchitecture in ovarian samples procured from Okhla as compared to Wazirabad barrage. Thus, exposure to the increasing toxicity downstream the river is altering the activity of cellular total antioxidant capacity persuading oxidative stress and cellular damage, eventually distressing the heath of fish fauna directly and humans indirectly.

Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures.

A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.

A homozygous missense mutation in ERAL1, encoding a mitochondrial rRNA chaperone, causes Perrault syndrome.

Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A > T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit, the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.

Natural variation of piRNA expression affects immunity to transposable elements.

In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon HeT-A, which we have observed in one particular transposon-resistant R strain.

A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population.

Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure and Fanconi anemia complementation group A (FANCA) is also a potential breast and ovarian cancer susceptibility gene. A novel allele with tandem duplication of 13 base pair sequence in promoter region was identified. To investigate whether the 13 base pair sequence of tandem duplication in promoter region of the FANCA gene is of high penetrance in patients with breast cancer and to determine if the presence of the duplicated allele was associated with an altered risk of breast cancer, the present study screened DNA in blood samples from 304 breast cancer patients and 295 normal individuals as controls. The duplication allele had a frequency of 35.4 and 21.2% in patients with breast cancer and normal controls, respectively. There was a significant increase in the frequency of the duplication allele in patients with familial breast cancer compared with controls (45.1%, P=0.001). Furthermore, the estimated risk of breast cancer in individuals with a homozygote [odds ratio (OR), 4.093; 95% confidence intervals (CI), 1.957‑8.561] or heterozygote duplicated genotype (OR, 3.315; 95% CI, 1.996‑5.506) was higher compared with the corresponding normal homozygote genotype. In conclusion, the present study indicated that the higher the frequency of the duplicated allele, the higher the risk of breast cancer. To the best of our knowledge, the present study is the first to report FANCA gene duplication in patients with breast cancer.

Discriminating between virilizing ovary tumors and ovary hyperthecosis in postmenopausal women: clinical data, hormonal profiles and image studies.

The presence of virilizing signs associated with high serum androgen levels in postmenopausal women is rare. Virilizing ovarian tumors (VOTs) and ovarian stromal hyperthecosis (OH) are the most common etiologies in virilized postmenopausal women. The differential diagnosis between these two conditions is often difficult.

A 28-Year-Old Woman With Branching Opacity and Chest Pain.

A 28-year-old female patient presented through her primary care physician with symptoms of atypical chest pain and chronic cough. Her pain was described as pleuritic and intermittently radiating to the right arm. Her medical history was significant for recurrent respiratory infections, gastritis, and a left ovarian cyst treated with ipsilateral salpingo-oophorectomy. She denied any history of smoking, known lung disease, or extrapulmonary infections.

Evaluation and treatment for ovotesticular disorder of sex development (OT-DSD) - experience based on a Chinese series.

The aim of this study is to review and present the clinical features and process of evaluation and treatment for OT-DSD in a single center in recent years in China.

Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features.

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.

Care of girls and women with Turner syndrome: beyond growth and hormones.

Turner syndrome (TS), although considered a rare disease, is the most common sex chromosome abnormality in women, with an incident of 1 in 2500 female births. TS is characterized by distinctive physical features such as short stature, ovarian dysgenesis, an increased risk for heart and renal defects as well as a specific cognitive and psychosocial phenotype. Given the complexity of the condition, patients face manifold difficulties which increase over the lifespan. Furthermore, failures during the transitional phase to adult care result in moderate health outcomes and decreased quality of life. Guidelines on the optimal screening procedures and medical treatment are easy to find. However, recommendations for the treatment of the incriminating psychosocial aspects in TS are scarce. In this work, we first reviewed the literature on the cognitive and psychosocial development of girls with TS compared with normal development, from disclosure to young adulthood, and then introduce a psychosocial approach to counseling and treating patients with TS, including recommendations for age-appropriate psychological diagnostics. With this work, we aim to facilitate the integration of emphasized psychosocial care in state-of-the-art treatment for girls and women with TS.

Anti-Müllerian Hormone and Ovarian Morphology in Women With Isolated Hypogonadotropic Hypogonadism/Kallmann Syndrome: Effects of Recombinant Human FSH.

Isolated hypogonadotropic hypogonadism (IHH), characterized by gonadotropin deficiency and absent puberty, is very rare in women. IHH prevents pubertal ovarian stimulation, but anti-Müllerian hormone (AMH) and antral follicle count (AFC) have not been studied.

Cytochrome P450 oxidoreductase deficiency caused by R457H mutation in POR gene in Chinese: case report and literature review.

Cytochrome P450 oxidoreductase deficiency (PORD) is a rare disease exhibiting a variety of clinical manifestations. It can be difficult to differentiate with other diseases such as 21-hydroxylase deficiency (21-OHD), polycystic ovary syndrome (PCOS) and Antley-Bixler syndrome (ABS). Nearly 100 cases of PORD have been reported worldwide. However, the genetic characters and clinical management are still unclear, especially in China.

Genetics of Reproductive Aging from Gonadal Dysgenesis through Menopause.

Reproduction is essential for the survival of the species and is influenced by external factors such as smoking and exposure to chemotherapy as well as chronic disorders such as obesity and autoimmunity. Reproductive senescence, such as menopause, is also dependent on multiple intrinsic genetic factors. Reproductive aging is not isolated from an overall aging process, and several studies strongly support the link between the early age of menopause and mortality. The extreme form of reproductive aging is primary ovarian insufficiency (POI) with prevalence ranging from 1 to 5% of the female population. POI has been shown to have long-term consequences on overall health. POI and age of menopause have a significant hereditary component. The population-based genome-wide association studies have identified 44 genomic loci to associate with age of menopause, and 29 of 44 loci harbor DNA damage response genes. Recent application of whole exome sequencing on carefully selected families with POI has also revealed a significant contribution of DNA damage response genes. The inability to repair the DNA damage in both somatic and germ cells might be a predisposing factor for the link between reproductive and overall aging in a subset of individuals with POI. The aim of this review is to characterize recent advances in the genetics of POI and its link with overall health.

MECHANISMS IN ENDOCRINOLOGY: Aging and anti-aging: a Combo-Endocrinology overview.

Aging and its underlying pathophysiological background has always attracted the attention of the scientific society. Defined as the gradual, time-dependent, heterogeneous decline of physiological functions, aging is orchestrated by a plethora of molecular mechanisms, which vividly interact to alter body homeostasis. The ability of an organism to adjust to these alterations, in conjunction with the dynamic effect of various environmental stimuli across lifespan, promotes longevity, frailty or disease. Endocrine function undergoes major changes during aging, as well. Specifically, alterations in hormonal networks and concomitant hormonal deficits/excess, augmented by poor sensitivity of tissues to their action, take place. As hypothalamic-pituitary unit is the central regulator of crucial body functions, these alterations can be translated in significant clinical sequelae that can impair the quality of life and promote frailty and disease. Delineating the hormonal signaling alterations that occur across lifespan and exploring possible remedial interventions could possibly help us improve the quality of life of the elderly and promote longevity.

Bilateral primary pigmented nodular adrenal disease as a component of Carney syndrome - case report.

We report a case of a 20-year-old patient with Cushing's syndrome as a component of Carney syndrome. Carney syndrome is an autosomal dominant disease with co-existing bilateral pigmented nodular adrenal disease, heart and skin myxoma, skin pigmentation, breast fibroadenoma, testicular and ovarian tumours, thyroid tumours, and pituitary adenomas. (Endokrynol Pol 2017; 68 (1): 70-72).

The Effect of the Testis on the Ovary: Structure-Function Relationships in a Neonate with a Unilateral Ovotestis (Ovotesticular Disorder of Sex Development)
.

To evaluate gonadal function in a newborn with suspected ovotesticular disorder of sex development (DSD).

Phase-specific expression of an insulin-like androgenic gland factor in a marine shrimp Lysmata wurdemanni: Implication for maintaining protandric simultaneous hermaphroditism.

Shrimp in the genus Lysmata have a unique and rare sexual system referred to as protandric simultaneous hermaphroditism, whereby individuals mature first as male (male phase), and then the female function may also develop as the shrimp grow, so that the gonad is able to produce both eggs and sperms simultaneously, a condition called simultaneous hermaphroditism (euhermaphrodite phase). To date, the mechanisms of sex control in this sexual system still remain poorly understood. Many studies indicate that an insulin-like androgenic gland factor (IAG) is involved in controlling sex differentiation in gonochoric crustaceans, but its role in the protandric simultaneous hermaphrodite is still not clear.

17α-HYDROXYLASE/17, 20-LYASE DEFICIENCY: CLINICAL AND MOLECULAR CHARACTERIZATION OF EIGHT CHINESE PATIENTS.

17α-hydroxylase/17, 20-lyase deficiency (17OHD) is caused by mutations in the cytochrome P450 17A1 (CYP17A1) gene. To better understand 17OHD, a rare disease, we described the clinical features and performed CYP17A1 gene analysis in 8 affected Chinese patients.