A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Runx3 - Top 30 Publications

Methylation analysis of p16, SLIT2, SCARA5, and Runx3 genes in hepatocellular carcinoma.

This study is to investigate the methylation status of multiple tumor suppressor 1 (p16), secreted glycoprotein 2 (SLIT2), scavenger receptor class A, member 5 putative (SCARA5), and human runt-related transcription factor 3 (Runx3) genes in the peripheral blood of hepatocellular carcinoma (HCC).This is a case-control study. The peripheral blood samples were collected from 25 HCC patients, 25 patients with high risk of HCC (defined as "internal control group"), and 25 healthy individuals (defined as "external control group"), respectively. Then the methylation status of p16, SLIT2, SCARA5, and Runx3 genes in the blood samples were analyzed by pyrosequencing. The relationship between the methylation and the clinical features of HCC patients were evaluated.The methylation levels in the 7 CpG loci of p16 gene in HCC patients were low and without statistically significant difference (P > .05) compared to the control groups. Although the methylation levels of CpG3 and CpG4 in SLIT2 gene loci were higher than those of the control groups, there was no statistically significant difference (P > .05). However, the methylation rate of CpG2 locus in SCARA5 gene in HCC patients was significantly higher (P < .05). And the methylation rates of CpG1, CpG2, CpG3, CpG4, CpG5, and CpG8 in Runx3 gene in HCC patients were significantly different to that of control groups (P < .05). We also have analyzed the correlations between the CpG islands methylation of Runx3 or SCARA5 genes and the age, gender, hepatitis B, liver cirrhosis, alpha fetal protein, or hepatitis B surface antigen (HBsAg) of the HCC patients, which all showed no significant correlations (P > .05).The methylation status of SCARA5 and Runx3 genes are abnormal in HCC patients, which may further be used as molecular markers for early auxiliary diagnosis of liver cancer.

HSD11B2, RUNX3, and LINE-1 Methylation in Placental DNA of Hypertensive Disorders of Pregnancy Patients.

Hypertensive Disorders of Pregnancy (HDsP) remain leading causes of maternal and perinatal morbidity and mortality. Growing evidence suggests the involvement of epigenetic factors, such as gene-specific and global DNA methylation changes, both in the etiology and as an effect of HDsP. In this study, we investigated the potential association between placental DNA methylation status in selected CpGs of HSD11B2 cortisol level controlling gene, RUNX3 tumor suppressor gene, and long interspersed nucleotide element-1 (LINE-1) repetitive elements and HDsP-preeclampsia (PE), gestational hypertension (GH), and chronic hypertension (CH). Methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ) were used to analyze placental DNA methylation. Plasma and urine cortisol and cortisone levels were measured using high performance liquid chromatography with fluorescence detection (HPLC-FLD), whereas serum progesterone level was determined by electrochemiluminescence immunoassay. The mean percentage of HSD11B2, RUNX3, and LINE-1 methylation was not altered in the placentas of patients with HDsP, as compared to the controls. However, among patients from PE, GH, and CH groups, several significant correlations were observed between the methylation status of HSD11B2, RUNX3, or LINE-1 and children's birth weight, gestational age at delivery, mother's age, and body mass index as well as hormones levels. These results indicate lack of association between methylation status of HSD11B2, RUNX3, or LINE-1 repetitive elements and HDsP. However, association of these parameters with some clinical variables may suggest the role of placental DNA methylation in fetal development and should be further explored.

RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway.

Runt-related transcription factor 3 (RUNX3) has been reported as a tumor suppressor in some kinds of cancers. In the present study, hepatocellular carcinoma (HCC) microarray analysis showed that RUNX3 expression was significantly lower in HCC tissues compared with that in adjacent non-tumor tissues, and was negatively associated with metastasis and TNM stage. RUNX3 was an independently prognostic factor for 5-year overall and disease-free patient survival. Mechanically, RUNX3 repressed metastasis and invasion of HCC, and increased E-cadherin expression. RUNX3 also repressed microRNA-186 to increase E-cadherin expression. We demonstrated that miR-186 mimics attenuated RUNX3-induced increase of E-cadherin and inhibition of metastasis and invasion. In conclusion, RUNX3 suppressed HCC cell migration and invasion by targeting the miR-186/E-cadherin/EMT pathway. RUNX3 may be recommended as an effective prognostic indicator and therapeutic target for patients with HCC.

Mislocalization of Runt-related transcription factor 3 results in airway inflammation and airway hyper-responsiveness in a murine asthma model.

The Runt-related transcription factor (RUNX) gene family consists of three members, RUNX1, -2 and -3, which heterodimerize with a common protein, core-binding factor β, and contain the highly conserved Runt-homology domain. RUNX1 and -2 have essential roles in hematopoiesis and osteogenesis. Runx3 protein regulates cell lineage decisions in neurogenesis and thymopoiesis. The aim of the present study was to determine the expression features of the Runx3 protein in a murine asthma model. In vivo, Runx3 protein and mRNA were found to be almost equivalently expressed in the murine lung tissue of the control, ovalbumin (OVA) and genistein groups; however, the nuclear Runx3 protein was abated in lung tissue in OVA-immunized and challenged mice. Following treatment with genistein, which is a flavonoid previously demonstrated to decrease airway inflammation in asthma, the allergic airway inflammation and airway hyper-responsiveness were attenuated and the Runx3 protein tended to augment in the nucleus. These results were further determined in vitro. These results indicated that the mislocalization of Runx3 protein is a molecular mechanism of allergic inflammation and airway hyper-responsiveness in a murine asthma model.

Regulation of Cartilage Development and Diseases by Transcription Factors.

Genetic studies and molecular cloning approaches have been successfully used to identify several transcription factors that regulate the numerous stages of cartilage development. Sex-determining region Y (SRY)-box 9 (Sox9) is an essential transcription factor for the initial stage of cartilage development. Sox5 and Sox6 play an important role in the chondrogenic action of Sox9, presumably by defining its cartilage specificity. Several transcription factors have been identified as transcriptional partners for Sox9 during cartilage development. Runt-related transcription factor 2 (Runx2) and Runx3 are necessary for hypertrophy of chondrocytes. CCAAT/enhancer-binding protein β (C/EBPβ) and activating transcription factor 4 (ATF4) function as co-activators for Runx2 during hypertrophy of chondrocytes. In addition, myocyte-enhancer factor 2C (Mef2C) is required for initiation of chondrocyte hypertrophy, presumably by functioning upstream of Runx2. Importantly, the pathogenic roles of several transcription factors in osteoarthritis have been demonstrated based on the similarity of pathological phenomena seen in osteoarthritis with chondrocyte hypertrophy. We discuss the importance of investigating cellular and molecular properties of articular chondrocytes and degradation mechanisms in osteoarthritis, one of the most common cartilage diseases.

Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes.

T-lineage committed precursor thymocytes are screened by a fate-determination process mediated via T cell receptor (TCR) signals for differentiation into distinct lineages. However, it remains unclear whether any antecedent event is required to couple TCR signals with the transcriptional program governing lineage decisions. Here we show that Bcl11b, known as a T-lineage commitment factor, is essential for proper expression of ThPOK and Runx3, central regulators for the CD4-helper/CD8-cytotoxic lineage choice. Loss of Bcl11b results in random expression of these factors and, thereby, lineage scrambling that is disconnected from TCR restriction by MHC. Initial Thpok repression by Bcl11b prior to the pre-selection stage is independent of a known silencer for Thpok, and requires the last zinc-finger motif in Bcl11b protein, which by contrast is dispensable for T-lineage commitment. Collectively, our findings shed new light on the function of Bcl11b in priming lineage-specifying genes to integrate TCR signals into subsequent transcriptional regulatory mechanisms.CD4 and CD8 T cells develop in the thymus with their transcription programs controlled by ThPOK and Runx3, respectively. Here the authors show that a pre-commitment event modulated by the transcription factor, Bcl11b, is required for the proper expression of ThPOK and Runx3 and correct CD4/CD8 lineage commitment.

Runx3 is a key modulator during the epithelial-mesenchymal transition of alveolar type II cells in animal models of BPD.

Bronchopulmonary dysplasia (BPD) is a major challenge for premature infants; however, the underlying mechanisms remain unclear. We previously reported that epithelial-mesenchymal transition (EMT) in alveolar type II (AT2) epithelial cells influences the normal alveolar development process. In this study, we wished to examine whether Runx3 is an important factor for BPD by regulating EMT in AT2 cells. In vivo, animal models of BPD were established by placing newborn rats in hyperoxia tanks. Lung tissue and isolated AT2 cells were collected on different days following exposure to oxygen. The pathological changes in lung tissue, alveolar development and Runx3 expression were then investigated. In vitro, RLE-6TN cells were divided into 5 groups as follows: the cont-rol, Runx3, siRunx3, transforming growth factor-β1 (TGF-β1) and Runx3 + TGF-β1 groups, and the biomarkers of EMT were investigated. In the newborn rat model of BPD, Runx3 protein and mRNA levels in both lung tissue and BPD-derived AT2 cells were significantly lower than those in the control group. The correlation between Runx3 protein expression and pulmonary development indicators was analyzed; Runx3 expression positively correlated with the radial alveolar count (RAC) and the percentage of smooth muscle actin-positive secondary septa, but negatively correlated with alveolar wall thickness. EMT was observed in the RLE-6TN cells in which the Runx3 gene was knocked down and follwoing TGF-β1‑induced EMT stimulation; however, TGF-β1 failed to induce EMT in the RLE-6TN cells overexpressing Runx3. On the whole, our data indicte that low Runx3 levels may promote EMT, while high Runx3 levels inhibit TGF-β1-induced EMT. Therefore, we predict that low levels of Runx3 in BPD lung tissue may promote EMT in AT2 cells, thus affecting alveolar development.

Screening of exon methylation biomarkers for colorectal cancer via LC-MS/MS strategy.

The identification of biomarkers would be benefit for the diagnosis and treatment of colorectal cancer in clinic. DNA methylation in specific genomic regions, which had shown strongly association with disease genotypes, was effective indicators to reveal the occurrence and development of cancers. To screen out the methylation biomarkers for colorectal cancer (CRC), genomic DNA was isolated from colorectal cancerous and corresponding cancer-adjacent tissues collected from 30 CRC patients and then bisulfite-converted. The exon regions of five targeted genes (CNRIP1, HIC1, RUNX3, p15 and SFRP2) were amplified using Nest-PCR with specific primers and the amplicon was purified and hydrolyzed. The methylation levels of these specific regions were detected by LC-MS/MS and evaluated using the formula. The results showed five targeted exon regions were successfully amplified and confirmed by sequencing. The methodological validations indicated LC-MS/MS was highly sensitive and accurate. The methylation levels of CNRIP1 and RUNX3 was remarkably high in CRC tissues with statistical difference when compared with corresponding cancer-adjacent individuals, while that of HIC1, p15 and SFRP2 had no difference between two subjects. These finding supported that CNRIP1 and RUNX3 can be used as potential DNA methylation biomarkers for CRC diagnosis and treatment, and our LC-MS/MS approach exhibited great advantages in the identification of regional DNA methylation biomarkers.

miR106b regulates retinoblastoma Y79 cells through Runx3.

MicroRNAs are increasingly recognized as important regulators of cancer. The aim of the present study was to investigate the role of miR-106b in the regulation of Y79 retinoblastoma. Y79 cells were transfected with antisense oligonucleotides (ASO) against miR-106b (ASO-miR-106b) or ASO-control. After transfection, the levels of miR-106b were monitored with real-time PCR (RT-PCR). The effects of ASO-miR-106b transfection on cell viability was evaluated by Cell Counting Kit-8 (CCK-8) analysis at 24, 48 and 72 h after transfection. Subsequently, the cells were stained with Annexin V-FITC and propidium iodide (PI) and subjected to flow cytometry to assess cell apoptosis. Transwell assay was used to analyze cell migration. Changes in Runt-related transcription factor 3 (Runx3) mRNA and proteins levels were also evaluated. miR-106b was downregulated by ASO-miR-106b at 48 and 72 h after transfection, accompanied by a decrease in cell viability and proliferation, as well as an increase in cell apoptosis. Transwell analysis indicated that cells treated with ASO-miR-106b exhibited significantly lower cell migratory abilities. The mRNA and protein level of Runx3 were upregulated after transfection. These results demonstrated that suppression of miR-106b inhibited Y79 cell proliferation and migration. The upregulation of Runx3 after miR-106b suppression ascertained that Runx3 is a tumor-suppressor in retinoblastoma and is a target of miR-106b.

BRCA2 carriers with male breast cancer show elevated tumour methylation.

Male breast cancer (MBC) represents a poorly characterised group of tumours, the management of which is largely based on practices established for female breast cancer. However, recent studies demonstrate biological and molecular differences likely to impact on tumour behaviour and therefore patient outcome. The aim of this study was to investigate methylation of a panel of commonly methylated breast cancer genes in familial MBCs.

RUNX3 as a Potential Predictor of Metastasis in Human Pancreatic Cancer.

In genetically engineered murine models of pancreatic ductal adenocarcinomas (PDAC), high levels of Runx3 increase the metastatic potential of cancer cells. In this study we evaluated the role of Runx3 in human pancreatic cancer.

Runx3 plays a critical role in restriction-point and defense against cellular transformation.

The restriction (R)-point decision is fundamental to normal differentiation and the G1-S transition, and the decision-making machinery is perturbed in nearly all cancer cells. The mechanisms underlying the cellular context-dependent R-point decision remain poorly understood. We found that the R-point was dysregulated in Runx3(-/-)mouse embryonic fibroblasts (MEFs), which formed tumors in nude mice. Ectopic expression of Runx3 restored the R-point and abolished the tumorigenicity of Runx3(-/-)MEFs and K-Ras-activated Runx3(-/-)MEFs (Runx3(-/-);K-Ras(G12D/+)). During the R-point, Runx3 transiently formed a complex with pRb and Brd2 and induced Cdkn1a (p21(Waf1/Cip1/Sdi1); p21), a key regulator of the R-point transition. Cyclin D-CDK4/6 promoted dissociation of the pRb-Runx3-Brd2 complex, thus turning off p21 expression. However, cells harboring oncogenic K-Ras maintained the pRb-Runx3-Brd2 complex and p21 expression even after introduction of Cyclin D1. Thus, Runx3 plays a critical role in R-point regulation and defense against cellular transformation.Oncogene advance online publication, 28 August 2017; doi:10.1038/onc.2017.290.

The Proprioceptive System Regulates Morphologic Restoration of Fractured Bones.

Successful fracture repair requires restoration of bone morphology and mechanical integrity. Recent evidence shows that fractured bones of neonatal mice undergo spontaneous realignment, dubbed "natural reduction." Here, we show that natural reduction is regulated by the proprioceptive system and improves with age. Comparison among mice of different ages revealed, surprisingly, that 3-month-old mice exhibited more rapid and effective natural reduction than newborns. Fractured bones of null mutants for transcription factor Runx3, lacking functional proprioceptors, failed to realign properly. Blocking Runx3 expression in the peripheral nervous system, but not in limb mesenchyme, recapitulated the null phenotype, as did inactivation of muscles flanking the fracture site. Egr3 knockout mice, which lack muscle spindles but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types, as well as muscle contraction, are required for this regulatory mechanism. These findings uncover a physiological role for proprioception in non-autonomous regulation of skeletal integrity.

The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis.

Maintaining posture requires tight regulation of the position and orientation of numerous spinal components. Yet, surprisingly little is known about this regulatory mechanism, whose failure may result in spinal deformity as in adolescent idiopathic scoliosis. Here, we use genetic mouse models to demonstrate the involvement of proprioception in regulating spine alignment. Null mutants for Runx3 transcription factor, which lack TrkC neurons connecting between proprioceptive mechanoreceptors and spinal cord, developed peripubertal scoliosis not preceded by vertebral dysplasia or muscle asymmetry. Deletion of Runx3 in the peripheral nervous system or specifically in peripheral sensory neurons, or of enhancer elements driving Runx3 expression in proprioceptive neurons, induced a similar phenotype. Egr3 knockout mice, lacking muscle spindles, but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types may be required for this regulatory mechanism. These findings uncover a central role for the proprioceptive system in maintaining spinal alignment.

The Relationship between RUNX3 Expression, Nursing Strategies and Nutritional Status in Elderly Patients with Advanced Gastric Cancer.

The aim of this study was to explore the relationship between nutritional status and expression of RUNX3 in gastric cancer cells and to investigate the effects of nursing strategies on the nutritional status of elderly patients with advanced gastric cancer.

MicroRNA-93 inhibits apoptosis and promotes proliferation, invasion and migration of renal cell carcinoma ACHN cells via the TGF-β/Smad signaling pathway by targeting RUNX3.

We investigated the ability of microRNA-93 (miR-93) to influence proliferation, invasion, migration, and apoptosisofrenal cell carcinoma (RCC) cells via transforming growth factor-β/solvated metal atom dispersed (TGF-β/Smad) signaling by targeting runt-related transcription factor 3 (RUNX3). RCC tissues with corresponding adjacent normal tissues were collected from 249 RCC patients. And normal renal tissues were collected from patients without RCC who received nephrectomy. The RCC cell line ACHN was treated with miR-93 mimic, mimic-negative control (NC), miR-93 inhibitor, inhibitor-NC, and miR-93 inhibitor + small interfering RNA (siRNA) against RUNX3 (si-RUNX3). Expression of miR-93, RUNX3, TGF-β, and Smad4 were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was assessed by the Metallothioneins (MTS) assay, cell invasion by the wound-healing assay, cell migration by the Transwell assay, and cell cycle and apoptosis by flow cytometry. Compared with normal renal tissues, the expression of miR-93 and TGF-β were higher while that of RUNX3 and Smad4 were low in RCC and adjacent normal tissues (all P<0.05). RUNX3 was confirmed as a target of miR-93 by the dual luciferase reporter gene assay. Compared with mimic-NC group, cell proliferation, invasion, migration and cells from G0/G1 to S phase enhanced but the apoptosis decreased in the miR-93 mimic group (all P<0.05). Compared with inhibitor-NC group, proliferation, invasion, and migration reduced, while apoptosis increased, and cells at G0/G1 phase arrested in the miR-93 inhibitor group (all P<0.05). Compared with miR-93 inhibitor group, cell proliferation, invasion, and migration increased with increasing cells from G1 to S phase while the apoptosis decreased, in miR-93 inhibitor + si-RUNX3 group (all P<0.05). In conclusion, miR-93 inhibits apoptosis and promotes proliferation, invasion, and migration of RCC cells via TGF-β/Smad signaling by inhibiting RUNX3.

miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3.

Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4(+) T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4(+) T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4(+) T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.

EZH2 promotes cell proliferation by regulating the expression of RUNX3 in laryngeal carcinoma.

Enhancer of zeste homolog 2 (EZH2) is a highly conserved histone methyltransferase, which is overexpressed in different types of cancers such as breast and prostate cancer. It is reported that EZH2 can directly down-regulate RUNX3 by increasing histone H3 methylation. However, the role of EZH2 in the development and progression of laryngeal carcinoma has not yet been investigated, and the relationship between EZH2 and RUNX3 in laryngeal carcinoma is rarely reported. The current study aims to determine the role of EZH2 in the progression of laryngeal carcinoma, and investigate the interaction between EZH2 and the tumor suppressor RUNX3. Our study found that EZH2 is overexpressed in laryngeal carcinoma patients, and silencing EZH2 by EZH2 siRNA significantly inhibited the proliferation of laryngeal carcinoma cells. Besides, we also found that RUNX3 is repressed in laryngeal carcinoma patients. Moreover, RUNX3 as a downstream target protein of EZH2 is up-regulated by EZH2 siRNA accompanied by a decrease in the trimethylation modification pattern of H3K27. RUNX3 siRNA inhibits the decreased proliferation induced by EZH2 siRNA. Furthermore, β-catenin protein expression is down-regulated by EZH2 siRNA and up-regulated by RUNX3 siRNA, and RUNX3 siRNA inhibits the down-regulation effect of EZH2 siRNA on β-catenin protein expression. Additionally, the Wnt/β-catenin activator BIO reverses the inhibitory effect of EZH2 siRNA on Hep-2 cell proliferation. Taken together, our results suggest that EZH2 regulates cell proliferation potentially by targeting RUNX3 through the Wnt/β-catenin signaling pathway in laryngeal carcinoma.

RUNX3 plays a tumor suppressor role by inhibiting cell migration, invasion and angiogenesis in oral squamous cell carcinoma.

Although aberrant expression of Runt-related transcription factor 3 (RUNX3) contributes to tumor progression and metastasis in a number of carcinomas, the status of RUNX3 and its correlation with prognosis in oral squamous cell carcinomas (OSCC) are still controversial. The aim of present study was to investigate the function of RUNX3 in OSCC and the underlying molecular mechanisms. Tissue microarray (TMA) consisting of 232 OSCC specimens was used to detect the expression of RUNX3 by immunohistochemistry method. The effects of RUNX3 restoration on OSCC cell migration and invasion were determined by wound-healing assay, migration and Matrigel cell invasion assays. The antiangiogenic role of RUNX3 was analyzed by testing proliferation and tube formation of human umbilical vascular endothelial cells (HUVECs) cultured with conditioned medium from RUNX3 transfected OSCC cell lines. The activities of MMP-9 and VEGF in RUNX3 transfected OSCC cell lines were examined by western blot and Elisa methods. RUNX3 expression was reduced in OSCC specimens and significantly associated with tumor size (P=0.002), lymph node statue (P=0.0036) and clinical stage (P=0.0001). Negative expression of RUNX3 correlated with worse 5-year overall and disease-specific survival rates (P=0.0348 and P=0.0301, respectively). Furthermore, we found that RUNX3 restoration suppressed cell migration and invasion through downregulating MMP-9 expression and secretion, and exerted antiangiogenic capability by inhibiting VEGF activity in HN6 and Cal27 cells. These findings suggested that RUNX3 played a tumor suppressor role in OSCC by inhibiting cell migration, invasion and angiogenesis, supporting that it could be a potential therapeutic target for OSCC.

The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer.

The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC.

Control of Regulatory T Cell Differentiation by the Transcription Factors Thpok and LRF.

The CD4(+) lineage-specific transcription factor Thpok is required for intrathymic CD4(+) T cell differentiation and, together with its homolog LRF, supports CD4(+) T cell helper effector responses. However, it is not known whether these factors are needed for the regulatory T cell (Treg) arm of MHC class II responses. In this study, by inactivating in mice the genes encoding both factors in differentiated Tregs, we show that Thpok and LRF are redundantly required to maintain the size and functions of the postthymic Treg pool. They support IL-2-mediated gene expression and the functions of the Treg-specific factor Foxp3. Accordingly, Treg-specific disruption of Thpok and Lrf causes a lethal inflammatory syndrome similar to that resulting from Treg deficiency. Unlike in conventional T cells, Thpok and LRF functions in Tregs are not mediated by their repression of the transcription factor Runx3. Additionally, we found that Thpok is needed for the differentiation of thymic Treg precursors, an observation in line with the fact that Foxp3(+) Tregs are CD4(+) cells. Thus, a common Thpok-LRF node supports both helper and regulatory arms of MHC class II responses.

An ancient neurotrophin receptor code; a single Runx/Cbfβ complex determines somatosensory neuron fate specification in zebrafish.

In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved.

A positive feedback loop promotes HIF-1α stability through miR-210-mediated suppression of RUNX3 in paraquat-induced EMT.

Irreversible pulmonary fibrosis induced by paraquat (PQ) poisoning is the major cause of death in patients with PQ poisoning. The epithelial-mesenchymal transition (EMT) is postulated to be one of the main mechanisms of pulmonary fibrosis. Here, we investigated the role of miR-210 in PQ-induced EMT and its relationship with hypoxia-inducible factor-1α (HIF-1α). Western blotting, immunofluorescence, immunoprecipitation and other methods were used in this study. We found that miR-210 expression was significantly increased after PQ poisoning, and it may be regulated by HIF-1α. Overexpression of miR-210 further increased the HIF-1α protein level and promoted EMT. Moreover, miR-210 knock-down reduced the HIF-1α protein level and decreased the degree of EMT. Runt-related transcription factor-3 (RUNX3), a direct target of miR-210, was inhibited by miR-210 in response to PQ poisoning. RUNX3 increased the hydroxylation ability of prolyl hydroxylase domain-containing protein 2 (PHD2), a key enzyme that promotes HIF-1α degradation. PHD2 immunoprecipitated with RUNX3 and its level changed similarly to that of RUNX3. The expression of the HIF-1α protein was significantly reduced when RUNX3 was overexpressed. HIF-1α protein levels were markedly increased when RUNX3 was silenced. Based on these results, a positive feedback loop may exist between miR-210 and HIF-1α. The mechanism may function through miR-210-mediated repression of RUNX3, which further decreases the hydroxylation activity of PHD2, enhances the stability of HIF-1α, and promotes PQ-induced EMT, aggravating the progression of pulmonary fibrosis. This study further elucidates the mechanism of PQ-induced pulmonary fibrosis and may provide a new perspective for the future development of therapies.

Runx3 inhibits melanoma cell migration through regulation of cell shape change.

The transcription factor Runx3 is a known tumor suppressor gene, and its expression is frequently lost in melanoma. However, the potential contribution of the loss of Runx3 expression to melanoma development and progression remains unclear. In this in vitro study, we demonstrated that ectopic Runx3 re-expression in B16-F10 melanoma cells changed the cell shape from elongated and branched to spread and unbranched, which enhanced stress fiber formation, increased the number of mature and fibrillar focal adhesions, and up-regulated fibronectin expression. In association with the cell shape change, the Runx3 re-expression in B16-F10 melanoma cells inhibited cell migration. Moreover, the phenotype of the Runx3 induced cell shape change was partially resembled when the melanoma cells were cultured on a fibronectin-coated coverslip, suggesting that fibronectin may mediate the Runx3 induced cell shape change of the melanoma cells. Taken together, our findings suggest that Runx3 may regulate cell shape to inhibit melanoma cell migration partly through enhancing stress fiber formation and ECM protein production. Our present study provides further evidence for the idea that cell shape change is potentially correlated with melanoma development and progression.

MicroRNA-661 promotes non-small cell lung cancer progression by directly targeting RUNX3.

Lung cancer is the primary cause of cancer‑associated mortality in men and women worldwide. Increasing evidence indicates that abnormal microRNA (miRNA) expression contributes to the carcinogenesis and progression of multiple human cancers, including non‑small cell lung cancer (NSCLC). Therefore, miRNAs exhibit the potential to act as biomarkers for the diagnosis, treatment and prognosis of human malignancies. miRNA‑661 (miR‑661) has previously been demonstrated to be important in the development of various human cancer types. However, the expression levels, functions and underlying mechanisms of miR‑661 in NSCLC remain to be elucidated. The present study demonstrated that miR‑661 was upregulated in NSCLC tissues and cell lines. In addition, miR‑661 expression levels were significantly correlated with differentiation and tumor stage lymph node metastasis of NSCLC patients. Functional experiments demonstrated that miR-661 downregulation inhibited NSCLC cell proliferation and invasion in vitro. Furthermore, runt‑related transcription factor 3 (RUNX3) was identified as a direct target of miR‑661 in NSCLC. RUNX3 was expressed at a low level in NSCLC tissues and was negatively correlated with the miR‑661 expression level. Further experiments revealed that RUNX3 knockdown significantly rescued the effects of miR‑661 underexpression on NSCLC cell proliferation and invasion. In conclusion, the present findings indicated a role for miR‑661 as an oncogene in NSCLC via direct targeting of RUNX3, thus suggesting that miR‑661 may be used to develop novel therapies for NSCLC patients.

A Variant in RUNX3 Is Associated with the Risk of Ankylosing Spondylitis in Koreans.

Ankylosing spondylitis (AS) is a chronic autoinflammatory disease that affects the spine and sacroiliac joints. Regarding its etiology, although HLA-B27 is known to be the strongest genetic factor of AS, much evidence suggests the potential contribution of non-MHC genes to the susceptibility to AS. Most of these non-MHC genes have been discovered in non-Asian populations; however, just some of them have been validated in Koreans. In this study, we aimed to identify additional AS-associated single-nucleotide polymorphism (SNP) candidates by replicating the candidate SNPs in Korean AS patients and healthy controls. For this, we selected three SNPs (rs11249215 in RUNX3, rs6556416 in IL12B, and rs8070463 in TBKBP1), which were previously reported as risk factors of AS but have not been studied in Koreans, and performed genotyping assays using a total of 1138 Korean samples (572 AS patients and 566 healthy controls). Of the three SNP candidates, one SNP in RUNX3 (rs11249215) was significantly associated with the risk of AS (odds ratio, 1.31; 95% confidence interval, 1.02 to 1.68, p = 0.03). These results will be helpful in elucidating the pathogenesis of AS and may be useful for developing AS risk prediction models in Koreans.

UnPAKing RUNX3 functions-Both sides of the coin.

Post translational modifications of RUNX3 have been shown to play an important role in directing RUNX3 functions. In this review we highlight the phosphorylation dependent functions of RUNX3 as regulated by PAK1 and its implications on tumorigenesis.

Identification of sequence variants influencing immunoglobulin levels.

Immunoglobulins are the effector molecules of the adaptive humoral immune system. In a genome-wide association study of 19,219 individuals, we found 38 new variants and replicated 5 known variants associating with IgA, IgG or IgM levels or with composite immunoglobulin traits, accounted for by 32 loci. Variants at these loci also affect the risk of autoimmune diseases and blood malignancies and influence blood cell development. Notable associations include a rare variant at RUNX3 decreasing IgA levels by shifting isoform proportions (rs188468174[C>T]: P = 8.3 × 10(-55), β = -0.90 s.d.), a rare in-frame deletion in FCGR2B abolishing IgG binding to the encoded receptor (p.Asn106del: P = 4.2 × 10(-8), β = 1.03 s.d.), four IGH locus variants influencing class switching, and ten new associations with the HLA region. Our results provide new insight into the regulation of humoral immunity.

DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review.

Evidence points to the role of DNA methylation in ulcerative colitis (UC)-associated cancer (UCC), the most serious complication of ulcerative colitis. A better understanding of the etiology of UCC may facilitate the development of new therapeutic targets and help to identify biomarkers of the disease risk.

The transcription factor Runx3 guards cytotoxic CD8(+) effector T cells against deviation towards follicular helper T cell lineage.

Activated CD8(+) T cells differentiate into cytotoxic effector (TEFF) cells that eliminate target cells. How TEFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in TEFF cells. Runx3-deficient CD8(+) TEFF cells aberrantly upregulated genes characteristic of follicular helper T (TFH) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the TFH program. Ablating Tcf7 in Runx3-deficient CD8(+) TEFF cells prevented the upregulation of TFH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing TFH-lineage deviation.