PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Zika virus - Top 30 Publications

Update From the Advisory Committee on Immunization Practices.

The Advisory Committee on Immunization Practices (ACIP), a group of medical and public health experts, meets 3 times per year to develop recommendations for vaccine use in the United States. The group has 15 voting members, and each member's term is 4 years. ACIP members and Centers for Disease Control and Prevention (CDC) staff discuss the epidemiology of vaccine-preventable diseases and vaccine research, effectiveness, safety data, and clinical trial results. Representatives from the American Academy of Pediatrics (Carrie L. Byington and D. W. K.) and the Pediatric Infectious Diseases Society (S. T. O.) are present as liaisons to the ACIP. The ACIP met on June 21 to 22, 2017, to discuss catch-up vaccination for hepatitis A vaccine, influenza surveillance, influenza vaccine effectiveness, herpes zoster vaccine, the effect of varicella vaccination on the incidence of herpes zoster, meningococcal disease in patients taking eculizumab, and considerations for a potential third dose of measles, mumps, and rubella (MMR) vaccine to combat ongoing mumps outbreaks. Updates on dengue virus epidemiology, Zika virus vaccines, anthrax vaccine, yellow fever vaccine, and the Vaccine Adverse Event Reporting System were given also.

Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice.

Zika virus (ZIKV) has become a global public health emergency due to its rapidly expanding range and its ability to cause severe congenital defects such as microcephaly. However, there are no FDA-approved therapies or vaccines against ZIKV infection. Through our screening of viral entry inhibitors, we found that chloroquine (CQ), a commonly used antimalarial and a FDA-approved drug that has also been repurposed against other pathogens, could significantly inhibit ZIKV infection in vitro, by blocking virus internalization. We also demonstrated that CQ attenuates ZIKV-associated morbidity and mortality in mice. Finally, we proved that CQ protects fetal mice from microcephaly caused by ZIKV infection. Our methodology of focusing on previously identified antivirals in screens for effectiveness against ZIKV proved to be a rapid and efficient means of discovering new ZIKV therapeutics. Selecting drugs that were previously FDA-approved, such as CQ, also improves the likelihood that they may more quickly reach stages of clinical testing and use by the public.

A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice.

A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV) infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis.

Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean-Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease.

Coordination of different complexes to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand- (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compound 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes.

Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses.

Intranasal mRNA vaccination provides immediate immune protection against pandemic diseases. Recent studies have shown that diverse forms of polyethyleneimine (PEI) have potent mucosal adjuvant activity, which could significantly facilitate the delivery of intranasal mRNA vaccines. Nevertheless, optimizing the chemical structure of PEI to maximize its adjuvanticity and decrease its toxicity remains a challenge. Here we show that the chemical structure of PEI strongly influences how well nanocomplexes of PEI and mRNA migrate to the lymph nodes and elicit immune responses. Conjugating cyclodextrin (CD) with PEI600 or PEI2k yielded CP (CD-PEI) polymers with different CD/PEI ratios. We analyzed the delivery efficacy of CP600, CP2k, and PEI25k as intranasal mRNA vaccine carriers by evaluating the lymph nodes migration and immune responses. Among these polymers, CP2k/mRNA showed significantly higher in vitro transfection efficiency, stronger abilities to migrate to lymph nodes and stimulate dendritic cells maturation in vivo, which further led to potent humoral and cellular immune responses, and showed lower local and systemic toxicity than PEI25k/mRNA. These results demonstrate the potential of CD-PEI2k/mRNA nanocomplex as a self-adjuvanting vaccine delivery vehicle that traffics to lymph nodes with high efficiency.

In utero negativization of Zika virus in a case with serious Central Nervous System abnormalities.

To describe a case of a pregnant woman with Zika virus infection and severe fetal brain malformations.

Zika Virus: Immune Evasion Mechanisms, Currently Available Therapeutic Regimens, and Vaccines.

The sudden emergence of infectious pathogens such as Zika virus (ZIKV) holds global health concerns. Recent dissemination of ZIKV from Pacific to Americas with an upsurge of congenital anomalies and Guillain Barre Syndrome (GBS) in adults has created an alarming situation. High-throughput studies are in progress to understand ZIKV's mode of pathogenesis and mechanism of immune escape, yet the pathogenesis remains obscure. Mainly ZIKV's envelope (E) protein and nonstructural proteins (mainly NS1 and NS5) manipulate host cell to support viral immune escape by modulation of the interferon pathway and complement antagonism. The development of direct therapeutics for ZIKV infection is required to overcome the rapidly evolving viral threat. Currently, the existing strategies for ZIKV treatment are only supportive. Although, there is no prophylactic or therapeutic vaccine presently available, however, recent efforts have brought up ZIKV vaccines into clinical trial phase 1. This review presents the highlights of recent advances in understanding immune evasion strategies adapted by ZIKV and existing therapies against the virus.

Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro.

Zika virus (ZIKV) has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

Generalized pustular psoriasis triggered by Zika virus infection.

Zika virus is an emerging arbovirus, which is expanding in epidemic proportions through tropical and subtropical areas of the world. Although Zika is linked to a number of congenital and neurological complications, there is scarce knowledge on the impact of ZIKV infection in human skin. We report the case of a 68-year old woman who presented with generalized pustular psoriasis after a preceding and otherwise uneventful episode of ZIKV infection. Based on recent experimental data on the biology of ZIKV infection in the cutaneous environment, we speculate that ZIKV may have directly triggered the development of generalized pustular psoriasis by stimulation of keratinocyte-derived mediators of inflammation and a polyfunctional T-cell driven immune reaction in the cutaneous milieu.

Sexual Transmission of Zika Virus: An Assessment of the Evidence.

A review of selected Arboviruses during pregnancy.

Arboviruses are emerging infectious diseases with the ability to expand geographically and rapidly affect large populations. The recent epidemic caused by the Zika virus in the Americas and congenital Zika syndrome associated with maternal infection has called out attention to the importance of studying arboviruses during pregnancy. This is a review on selected arboviruses infections during gestation, including Zika, Chikungunya, Dengue and Yellow Fever viruses. Issues such as historical overview, pathogenesis, transmission, clinical conditions, diagnosis, treatment and prevention are addressed.

Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread.

Respiratory and arthropod-borne viral infections are a global threat due to the lack of effective antivirals and vaccines. A potential strategy is to target host proteins required for viruses but non-essential for the host. To identify such proteins, we performed a genome-wide knockout screen in human haploid cells and identified the calcium pump SPCA1. SPCA1 is required by viruses from the Paramyxoviridae, Flaviviridae, and Togaviridae families, including measles, dengue, West Nile, Zika, and chikungunya viruses. Calcium transport activity is required for SPCA1 to promote virus spread. SPCA1 regulates proteases within the trans-Golgi network that require calcium for their activity and are critical for virus glycoprotein maturation. Consistent with these findings, viral glycoproteins fail to mature in SPCA1-deficient cells preventing viral spread, which is evident even in cells with partial loss of SPCA1. Thus, SPCA1 is an attractive antiviral host target for a broad spectrum of established and emerging viral infections.

Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells.

The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24-36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection.

Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate.

Zika virus (ZIKV, genus Flavivirus) has emerged as a major mosquito-transmitted human pathogen, with recent outbreaks associated with an increased incidence of neurological complications, particularly microcephaly and the Guillain-Barré syndrome. Because the virus has only very recently emerged as an important pathogen, research is being hampered by a lack of reliable molecular tools. Here we report an infectious cDNA (icDNA) clone for ZIKV isolate BeH819015 from Brazil, which was selected as representative of South American ZIKV isolated at early stages of the outbreak. icDNA clones were assembled from synthetic DNA fragments corresponding to the consensus sequence of the BeH819015 isolate. Virus rescued from the icDNA clone had properties identical to a natural ZIKV isolate from South America. Variants of the clone-derived virus, expressing nanoluciferase, enhanced green fluorescent or mCherry marker proteins in both mammalian and insect cells and being genetically stable for multiple in vitro passages, were obtained. A ZIKV subgenomic replicon, lacking a prM- and E glycoprotein encoding region and expressing a Gaussia luciferase marker, was constructed and shown to replicate both in mammalian and insect cells. In the presence of the Semliki Forest virus replicon, expressing ZIKV structural proteins, the ZIKV replicon was packaged into virus-replicon particles. Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.

Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection.

The human cerebral cortex possesses distinct structural and functional features that are not found in the lower species traditionally used to model brain development and disease. Accordingly, considerable attention has been placed on the development of methods to direct pluripotent stem cells to form human brain-like structures termed organoids. However, many organoid differentiation protocols are inefficient and display marked variability in their ability to recapitulate the three-dimensional architecture and course of neurogenesis in the developing human brain. Here, we describe optimized organoid culture methods that efficiently and reliably produce cortical and basal ganglia structures similar to those in the human fetal brain in vivo. Neurons within the organoids are functional and exhibit network-like activities. We further demonstrate the utility of this organoid system for modeling the teratogenic effects of Zika virus on the developing brain and identifying more susceptibility receptors and therapeutic compounds that can mitigate its destructive actions.

Guillain-Barré Syndrome Associated With Zika Virus Infection in Martinique in 2016: A Prospective Study.

Guillain-Barré syndrome (GBS) has been reported to be associated with Zika virus (ZIKV) infection in case reports and retrospective studies, mostly on the basis of serological tests, with the problematic cross-reacting antibodies of the Flavivirus genus. Some GBS cases do not exhibit a high level of diagnostic certainty. This prospective study aimed to describe the clinical profiles and the frequency of GBS associated with ZIKV during the ZIKV outbreak in Martinique in 2016.

Innate, T and B Cell Responses in Acute Human Zika Patients.

There is an urgent need for studies of viral persistence and immunity during human Zika infections to inform planning and conduct of vaccine clinical trials.

Distinguishing secondary dengue virus infection from Zika virus infection with previous dengue by a combination of three simple serological tests.

The explosive spread of Zika virus (ZIKV) and associated microcephaly present an urgent need for sensitive and specific serodiagnostic tests, particularly for pregnant women in dengue virus (DENV)-endemic regions. Recent reports of enhanced ZIKV replication by dengue-immune sera have raised concerns about the role of previous DENV infection on the risk and severity of microcephaly and other ZIKV complications.

Central Nervous System Effects of Intrauterine Zika Virus Infection: A Pictorial Review.

Relatively few agents have been associated with congenital infections involving the brain. One such agent is the Zika virus, which has caused several outbreaks worldwide and has spread in the Americas since 2015. The Zika virus is an arbovirus transmitted by infected female mosquito vectors, such as the Aedes aegypti mosquito. This virus has been commonly associated with congenital infections of the central nervous system and has greatly increased the rates of microcephaly. Ultrasonography (US) remains the method of choice for fetal evaluation of congenital Zika virus infection. For improved assessment of the extent of the lesions, US should be complemented by magnetic resonance (MR) imaging. Postnatal computed tomography and MR imaging can also unveil additional findings of central nervous system involvement, such as microcephaly with malformation of cortical development, ventriculomegaly, and multifocal calcifications in the cortical-subcortical junction, along with associated cortical atrophy. The calcifications may be punctate, dystrophic, linear, or coarse and may follow a predominantly bandlike distribution. A small anterior fontanelle with prematurely closed sutures is also observed with Zika virus infection. In this review, the prenatal and postnatal neurologic imaging findings of congenital Zika virus infection are covered. Radiologists must be aware of this challenging entity and have knowledge of the various patterns that may be depicted with each imaging modality and the main differential diagnosis of the disease. As in other neurologic infections, serial imaging is able to help demonstrate the progression of the findings. (©)RSNA, 2017.

Invited Commentary on "Central Nervous System Effects of Intrauterine Zika Virus Infection".

Neurological Complications in a Polynesian Traveler with Dengue.

In recent times, there has been an increased focus on mosquito-borne Flaviviruses, in particular dengue and Zika. With the reappearance of dengue in Hawai'i and the mainland United States (US), clinicians should be aware of both the common presentations of dengue, as well as other less common complications associated with the disease. Dengue can result in neurologic disorders such as encephalopathy, encephalitis, immune-mediated syndromes, neuromuscular dysfunction, and neuro-ophthalmologic disorders. We present an interesting case of dengue that initially presented with classic symptoms (arthropathy, biphasic fever, and rash) and subsequently developed into a neurologic movement disorder with muscle tightening and twitching of the face, chest, and extremities. We review and update the epidemiology, biology, the clinical presentations including the neurologic complications associated with dengue, as well as their management and areas of future study in this field.

Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III.

The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein from a very large phage-display naive antibody library. These germline-like antibodies, sharing 98%-100% hoLogy with their corresponding germline IGHV genes, bound ZIKV DIII specifically with high affinities. One mAb, m301, broadly neutralized the currently circulating ZIKV strains and showed a synergistic effect with another mAb, m302, in neutralizing ZIKV in vitro and in a mouse model of ZIKV infection. Interestingly, epitope mapping and competitive binding studies suggest that m301 and m302 bind adjacent regions of the DIII C-C' loop, which represents a recently identified cryptic epitope that is intermittently exposed in an uncharacterized virus conformation. This study extended our understanding of antigenic epitopes of ZIKV antibodies and has direct implications for the design of ZIKV vaccines.

Insights into the molecular roles of Zika virus in human reproductive complications and congenital neuropathologies.

The recent upsurge in the association of congenital neurological disorders and infection by the Zika virus (ZIKV) has resulted in increased research focus on the biology of this flavivirus. Studies in animal models indicate that ZIKV can breach the placental barrier and selectively infect and deplete neuroprogenitor cells (NPCs) of the developing fetus, resulting in changes of brain structures, reminiscent of human microcephaly. In vitro and ex vivo studies using human cells and tissues showed that human NPCs and placental cells are targeted by ZIKV. Also of concern is the impact of ZIKV on human reproductive structures, with the potential to cause infertility, as the virus appears to remain in the genital tract for extended periods of time. This review discusses the putative roles of ZIKV on human reproductive complications and congenital neuropathologies.

The Response of the Peer Review System to the Ebola and Zika Virus Epidemic.

Viral Load and Cytokine Response Profile Does Not Support Antibody-Dependent Enhancement in Dengue-Primed Zika Virus-Infected Patients.

The pathogenesis of severe dengue disease involves immune components as biomarkers. The mechanism by which some dengue virus (DENV)-infected individuals progress to severe disease is poorly understood. Most studies on the pathogenesis of severe dengue disease focus on the process of antibody-dependent enhancement (ADE) as a primary risk factor. With the circulation of Zika virus (ZIKV) in DENV-endemic areas, many people infected by ZIKV were likely exposed to DENV. The influence of such exposure on Zika disease outcomes remains unknown.

Modelling Zika Virus Infection of the Developing Human Brain In Vitro Using Stem Cell Derived Cerebral Organoids.

The recent emergence of Zika virus (ZIKV) in susceptible populations has led to an abrupt increase in microcephaly and other neurodevelopmental conditions in newborn infants. While mosquitos are the main route of viral transmission, it has also been shown to spread via sexual contact and vertical mother-to-fetus transmission. In this latter case of transmission, due to the unique viral tropism of ZIKV, the virus is believed to predominantly target the neural progenitor cells (NPCs) of the developing brain. Here a method for modeling ZIKV infection, and the resulting microcephaly, that occur when human cerebral organoids are exposed to live ZIKV is described. The organoids display high levels of virus within their neural progenitor population, and exhibit severe cell death and microcephaly over time. This three-dimensional cerebral organoid model allows researchers to conduct species-matched experiments to observe and potentially intervene with ZIKV infection of the developing human brain. The model provides improved relevance over standard two-dimensional methods, and contains human-specific cellular architecture and protein expression that are not possible in animal models.

The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and Dengue virus.

The Zika virus (ZIKV) has two lineages, Asian and African, and their impact on developing brains has not been compared. Dengue virus (DENV) is a close family member of ZIKV and co-circulates with ZIKV. Here we performed intracerebral inoculation of embryonic mouse brains with dengue virus 2 (DENV2), and found that DENV2 is sufficient to cause smaller brain size due to increased cell death in neural progenitor cells (NPCs) and neurons. Compared to the currently circulating Asian lineage of ZIKV (MEX1-44), DENV2 grows slower, causes less neuronal death, and fails to cause postnatal animal death. Surprisingly, our side-by-side comparison uncovered that African ZIKV isolate (MR-766) is more potent in causing brain damage and postnatal lethality than MEX1-44. In comparison to MEX1-44, MR-766 grows faster in NPCs and in the developing brain, and causes more pronounced cell death in NPCs and neurons, resulting in more severe neuronal loss. Together, these results reveal that DENV2 is sufficient to cause smaller brain sizes, and suggest that the ZIKV African lineage is more virulent and causes more severe brain damage than the Asian lineage.

Hidden burden of chikungunya in North India; A prospective study in a tertiary care centre.

Arboviral diseases, such as chikungunya, dengue and now zika represent a public health problem, especially in tropical countries. Epidemiology of chikungunya and dengue is well known, including its social and climatic factors associated, but only few data and reports of chikungunya are available from North India. The clinical differentiation of chikungunya from dengue is no doubt challenging since both diseases can share clinical signs and symptoms leading to potential misdiagnosis of chikungunya in areas where dengue is endemic. The aim of this study was to know the seroprevalence, seasonal trends, clinical presentations of chikungunya and its co-infection with dengue virus.

Zika virus disease-associated Guillain-Barré syndrome-Barranquilla, Colombia 2015-2016.

An outbreak of Guillain-Barré syndrome (GBS), a disorder characterized by acute, symmetric limb weakness with decreased or absent deep-tendon reflexes, was reported in Barranquilla, Colombia, after the introduction of Zika virus in 2015. We reviewed clinical data for GBS cases in Barranquilla and performed a case-control investigation to assess the association of suspect and probable Zika virus disease with GBS.