A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Zika virus - Top 30 Publications

Study of the mechanism of protonated histidine-induced conformational changes in the Zika virus dimeric envelope protein using accelerated molecular dynamic simulations.

The Zika virus has drawn worldwide attention because of the epidemic diseases it causes. It is a flavivirus that has an icosahedral protein shell constituted by an envelope glycoprotein (E-protein) and membrane protein (M-protein) in the mature virion. The multistep process of membrane fusion to infect the host cell is pH-induced. To understand the mechanism of the conformational changes in the (E-M)2 protein homodimer embedded in the membrane, two 200-ns accelerated dynamic simulations were performed under different pH conditions. The low pH condition weakens the interactions and correlations in both E-protein monomers and in the E-M heterodimer. The highly conserved residues, His249, His288, His323 and His446, are protonated under low pH conditions and play key roles in driving the fusion process. The analysis and discussion in this study may provide some insight into the molecular mechanism of Zika virus infection.

Mosquitoes Transmit Unique West Nile Virus Populations during Each Feeding Episode.

Arthropod-borne viruses (arboviruses), such as Zika virus, chikungunya virus, and West Nile virus (WNV), pose continuous threats to emerge and cause large epidemics. Often, these events are associated with novel virus variants optimized for local transmission that first arise as minorities within a host. Thus, the conditions that regulate the frequency of intrahost variants are important determinants of emergence. Here, we describe the dynamics of WNV genetic diversity during its transmission cycle. By temporally sampling saliva from individual mosquitoes, we demonstrate that virus populations expectorated by mosquitoes are highly diverse and unique to each feeding episode. After transmission to birds, however, most genetic diversity is removed by strong purifying selection. Further, transmission of potentially mosquito-adaptive WNV variants is strongly influenced by genetic drift in mosquitoes. These results highlight the complex evolutionary forces a novel virus variant must overcome to alter infection phenotypes at the population level.


The emergence of Zika virus (ZIKV) infection has stimulated several research groups to study and collaborate to understand virus biology and pathogenesis. These efforts may assist with the development of antiviral drugs, vaccines and diagnostic tests, as well as to promote advancements in public health policies. Here, we aim to develop standard protocols for propagation, titration, and purification of Asian and Brazilian ZIKV strains, by systematically testing different cell types, kinetics, multiplicity of infection and centrifugation protocols. ZIKV produces a productive infection in human, non-human primate, and rodents-derived cell lines, with different efficacies. The highest yield of ZIKV-AFR and ZIKV-BR infectious progeny was obtained at 7days post infection in C6/36 cells (7×10(7) and 2×10(8) PFU/ml, respectively). However, high titers of ZIKV-AFR could be obtained at earlier time points in Vero cells (2.5×10(7)PFU/ml at 72hpi), whereas ZIKV-BR titers reached 10(8) PFU/ml at 4dpi in C6/36 cells. High yield of purified virus was obtained by purification through a discontinuous sucrose gradient. This optimized procedure will certainly contribute to future studies of virus structure and vaccine development. Beyond the achievement of efficient virus propagation, the normalization of these protocols will also allow different laboratories around the world to better compare and discuss data regarding different features of ZIKV biology and disease, contributing to more efficient collaborations and progression in ZIKV research.

Importation of Zika Virus from Vietnam to Japan, November 2016.

We report a case of Zika virus infection that was imported to Japan by a traveler returning from Vietnam. We detected Zika virus RNA in the patient's saliva, urine, and whole blood. In the Zika virus strain isolated from the urine, we found clearly smaller plaques than in previous strains.

Overview on the Current Status of Zika Virus Pathogenesis and Animal Related Research.

There is growing evidence that Zika virus (ZIKV) infection is linked with activation of Guillan-Barré syndrome (GBS) in adults infected with the virus and microcephaly in infants following maternal infection. With the recent outpour in publications by numerous research labs, the association between microcephaly in newborns and ZIKV has become very apparent in which large numbers of viral particles were found in the central nervous tissue of an electively aborted microcephalic ZIKV-infected fetus. However, the underlying related mechanisms remain poorly understood. Thus, development of ZIKV-infected animal models are urgently required. The need to develop drugs and vaccines of high efficacy along with efficient diagnostic tools for ZIKV treatment and management raised the demand for a very selective animal model for exploring ZIKV pathogenesis and related mechanisms. In this review, we describe recent advances in animal models developed for studying ZIKV pathogenesis and evaluating potential interventions against human infection, including during pregnancy. The current research directions and the scientific challenges ahead in developing effective vaccines and therapeutics are also discussed.

Congenital Zika virus infection induces severe spinal cord injury.

We reported two fatal cases of congenital Zika virus (ZIKV) infection. Brain anomalies including atrophy of the cerebral cortex and brainstem, and cerebellar aplasia were observed. The spinal cord showed architectural distortion, severe neuronal loss and microcalcifications. The ZIKV proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons, and spinal cord samples were positive for the ZIKV RNA.

Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review.

This article discusses the peculiar conditions that favoured the unexpected introduction of Zika virus into the poorest northeastern region of Brazil in 2015, its speed of transmission to other Brazilian states, other Latin American countries and other regions, and the severity of related neurological disorders in newborns and adults. Contrasting with evidence that Zika had so far caused only mild cases in humans in the last six decades, the epidemiological scenario of this outbreak in Brazil indicates dramatic health effects: in 2015, an increase of 20-fold in notified cases of microcephaly and/or central nervous system (CNS) alterations suggestive of Zika congenital infection, followed by an exponential increase in 2016, with 2366 cumulative cases confirmed in the country by the end of December 2016. A significant increase in Guillain-Barré syndrome in adults has also been reported. Factors involved in viral dissemination, neural pathogenesis and routes of transmission in Brazil are examined, such as the role of social and environmental factors and the controversies involved in the hypothesis of antibody-dependent enhancement, to explain the incidence of congenital Zika syndrome in Brazil. Responses to the Zika outbreak and the development of new products are also discussed.

Vector competence and transovarial transmission of two Aedes aegypti strains to Zika virus.

Zika virus (ZIKV) has become a serious threat to global health since the outbreak in Brazil in 2015. Additional Chinese cases have continuously been reported since the first case of laboratory-confirmed ZIKV infection in China on 6 February 2016. Aedes aegypti is the most important vector for ZIKV. This study shows that two strains from China exhibit high levels of midgut infection and highly disseminated infection of salivary glands and ovaries. Both strains can transmit ZIKV to infant mice bitten by infectious mosquitoes. Moreover, the results provide the evidence of transovarial transmission of ZIKV in mosquitoes. The study indicates that the two Ae. aegypti strains are not only effective transmission vectors but also persistent survival hosts for ZIKV during unfavorable inter-epidemic periods. This function as a reservoir of infection has epidemiological implications that further enhance the risk of potential future outbreaks.

Zika virus infection reprograms global transcription of host cells to allow sustained infection.

Zika virus (ZIKV) is an emerging virus causally linked to neurological disorders, including congenital microcephaly and Guillain-Barré syndrome. There are currently no targeted therapies for ZIKV infection. To identify novel antiviral targets and to elucidate the mechanisms by which ZIKV exploits the host cell machinery to support sustained replication, we analyzed the transcriptomic landscape of human microglia, fibroblast, embryonic kidney and monocyte-derived macrophage cell lines before and after ZIKV infection. The four cell types differed in their susceptibility to ZIKV infection, consistent with differences in their expression of viral response genes before infection. Clustering and network analyses of genes differentially expressed after ZIKV infection revealed changes related to the adaptive immune system, angiogenesis and host metabolic processes that are conducive to sustained viral production. Genes related to the adaptive immune response were downregulated in microglia cells, suggesting that ZIKV effectively evades the immune response after reaching the central nervous system. Like other viruses, ZIKV diverts host cell resources and reprograms the metabolic machinery to support RNA metabolism, ATP production and glycolysis. Consistent with these transcriptomic analyses, nucleoside metabolic inhibitors abrogated ZIKV replication in microglia cells.

N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment.

Spread of Zika virus in the Americas.

We use a data-driven global stochastic epidemic model to analyze the spread of the Zika virus (ZIKV) in the Americas. The model has high spatial and temporal resolution and integrates real-world demographic, human mobility, socioeconomic, temperature, and vector density data. We estimate that the first introduction of ZIKV to Brazil likely occurred between August 2013 and April 2014 (90% credible interval). We provide simulated epidemic profiles of incident ZIKV infections for several countries in the Americas through February 2017. The ZIKV epidemic is characterized by slow growth and high spatial and seasonal heterogeneity, attributable to the dynamics of the mosquito vector and to the characteristics and mobility of the human populations. We project the expected timing and number of pregnancies infected with ZIKV during the first trimester and provide estimates of microcephaly cases assuming different levels of risk as reported in empirical retrospective studies. Our approach represents a modeling effort aimed at understanding the potential magnitude and timing of the ZIKV epidemic and it can be potentially used as a template for the analysis of future mosquito-borne epidemics.

Temperature and development of Zika virus infection: An Indonesian case.

Zika virus infection and its emerging trends in Southeast Asia.

Zika virus is a mosquito-borne flavivirus that represents a public health emergency at the ongoing epidemic. Previously, this rare virus was limited to sporadic cases in Africa and Asia until its emergence in Brazil, South America in 2015, where it rapidly spread throughout the world. Recently, a high number of cases were reported in Singapore and other Southeast Asia countries. A combination of factors explains the current Zika virus outbreak although it is highly likely that the changes in the climate and high frequency of travelling contribute to the spread of Aedes vector carrying the Zika virus mainly to the tropical climate countries such as the Southeast Asia. The Zika virus is known to cause mild clinical symptoms similar to those of dengue and chikungunya and transmitted by different species of Aedes mosquitoes. However, neurological complications such as Guillain-Barré syndrome in adults, and congenital anomalies, including microcephaly in babies born to infected mothers, raised a serious concern. Currently, there is no specific antiviral treatment or vaccine available for Zika virus infection. Therefore, international public health response is primarily focused on preventing infection, particularly in pregnant women, and on providing up-to-date recommendations to reduce the risk of non-vector transmission of Zika virus.

Dengue Virus Non-Structural Protein 5.

The World Health Organization estimates that the yearly number of dengue cases averages 390 million. This mosquito-borne virus disease is endemic in over 100 countries and will probably continue spreading, given the observed trend in global warming. So far, there is no antiviral drug available against dengue, but a vaccine has been recently marketed. Dengue virus also serves as a prototype for the study of other pathogenic flaviviruses that are emerging, like West Nile virus and Zika virus. Upon viral entry into the host cell and fusion of the viral lipid membrane with the endosomal membrane, the viral RNA is released and expressed as a polyprotein, that is then matured into three structural and seven non-structural (NS) proteins. The envelope, membrane and capsid proteins form the viral particle while NS1-NS2A-NS2B-NS3-NS4A-NS4B and NS5 assemble inside a cellular replication complex, which is embedded in endoplasmic reticulum (ER)-derived vesicles. In addition to their roles in RNA replication within the infected cell, NS proteins help the virus escape the host innate immunity and reshape the host-cell inner structure. This review focuses on recent progress in characterizing the structure and functions of NS5, a protein responsible for the replication and capping of viral RNA that represents a promising drug target.

Zika Virus Infection.

Control of Mosquito-Borne Diseases in Northwestern Italy: Preparedness from One Season to the Next.

Mosquito-borne diseases (MBDs) are spreading worldwide due to globalization and climate change, representing a threat for both humans and animals. Of great concern are the infections caused by viruses belonging to the Flavivirus genus as West Nile virus (WNV) and Usutu virus (USUV) transmitted by Culex sp. or Dengue virus and Zika virus (ZIKV), transmitted by Aedes sp. This work describes the surveillance protocol enforced in Piedmont (Northwestern Italy) to control MBDs spread, focusing on the activities performed on mosquitoes during the 2015 vector season.

First Two Imported Cases of Zika Virus Infections in Romania.

We report the first two cases of imported Zika virus (ZIKV) infection in Romanian patients returning from areas with ongoing outbreaks and challenges for laboratory diagnostic; first one with a classical pattern of acute flaviviral infection and the second one with an interesting pattern of a secondary flaviviral (ZIKV) infection in a yellow fever-vaccinated child living abroad in an endemic area.

Corrigendum: The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication.

In silico CD4+, CD8+ T-cell and B-cell immunity associated immunogenic epitope prediction and HLA distribution analysis of Zika virus.

Zika virus (ZIKV) is a mosquito-borne flavivirus distributed all over Africa, South America and Asia. The infection with the virus may cause acute febrile sickness that clinically resembles dengue fever, yet there is no vaccine, no satisfactory treatment, and no means of evaluating the risk of the disease or prognosis in the infected people. In the present study, the efficacy of the host's immune response in reducing the risk of infectious diseases was taken into account to carry out immuno-informatics driven epitope screening strategy of vaccine candidates against ZIKV. In this study, HLA distribution analysis was done to ensure the coverage of the vast majority of the population. Systematic screening of effective dominant immunogens was done with the help of Immune Epitope & ABCPred databases. The outcomes suggested that the predicted epitopes may be protective immunogens with highly conserved sequences and bear potential to induce both protective neutralizing antibodies, T & B cell responses. A total of 25 CD4+ and 16 CD8+ peptides were screened for T-cell mediated immunity. The predicted epitope "TGLDFSDLYYLTMNNKHWLV" was selected as a highly immunogenic epitope for humoral immunity. These peptides were further screened as non-toxic, immunogenic and non-mutated residues of envelop viral protein. The predicted epitope could work as suitable candidate(s) for peptide based vaccine development. Further, experimental validation of these epitopes is warranted to ensure the potential of B- and T-cells stimulation for their efficient use as vaccine candidates, and as diagnostic agents against ZIKV.

First case of imported chikungunya infection in Croatia, 2016.

In recent years, several European countries reported cases of imported chikungunya infection. We present the first imported clinically manifested chikungunya fever in Croatia. A 27-year-old woman returned to Croatia on 21 March 2016, after she stayed in Costa Rica for two months where she had noticed a mosquito bite on her left forearm. Five days after the mosquito bite she developed severe arthralgias, fever and erythematous papular rash. In next few days symptoms gradually subsided. After ten days she felt better, but arthralgias re-appeared accompanied with morning stiffness. Two weeks after the onset of the disease she visited the infectious diseases outpatient department. The physical examination revealed rash on the trunk, extremities, palms and soles. Laboratory findings showed slightly elevated liver transaminases. Serological tests performed on day 20 after disease onset showed a high titer of chikungunya virus (CHIKV) IgM and IgG antibodies which indicated CHIKV infection. CHIKV-RNA was not detected. Serology to dengue and Zika virus was negative. The patient was treated with nonsteroid anti-inflammatory drugs and paracetamol. Her symptoms ameliorated, however, three months later she still complaint of arthralgias. The presented case highlights the need for inclusion of CHIKV in the differential diagnosis of arthralgia in all travelers returning from countries with documented CHIKV transmission.


Zika virus (ZikaV) is currently one of the most important emerging viruses in the world which has caused outbreaks and epidemics and has also been associated with severe clinical manifestations and congenital malformations. Traditional approaches to combat the ZikaV outbreak are not effective for detection and control. The aim of this study is to propose a cloud-based system to prevent and control the spread of Zika virus disease using integration of mobile phones and Internet of Things (IoT).

Blood and the Zika virus.

Vaccination strategies against Zika virus.

The epidemic emergence of Zika virus (ZIKV) in 2015-2016 has been associated with congenital malformations and neurological sequela. Current efforts to develop a ZIKV vaccine build on technologies that successfully reduced infection or disease burden against closely related flaviviruses or other RNA viruses. Subunit-based (DNA plasmid and modified mRNA), viral vectored (adeno- and measles viruses) and inactivated viral vaccines are already advancing to clinical trials in humans after successful mouse and non-human primate studies. Among the greatest challenges for the rapid implementation of immunogenic and protective ZIKV vaccines will be addressing the potential for exacerbating Dengue virus infection or causing Guillain-Barré syndrome through production of cross-reactive immunity targeting related viral or host proteins. Here, we review vaccine strategies under development for ZIKV and the issues surrounding their usage.

Zika virus infection of adult and fetal STAT2 knock-out hamsters.

Zika virus (ZIKV) infection was investigated in adult and fetal STAT2 knock-out (KO) hamsters. Subcutaneous injection of ZIKV of adults resulted in morbidity, mortality, and infection of the uterus, placenta, brain, spinal cord, and testicles, thus providing an opportunity to evaluate congenital ZIKV infection in a second rodent species besides mice. ZIKV-infected cells with morphologies of Sertoli cells and spermatogonia were observed in the testes, which may have implications for sexual transmission and male sterility. Neonates exposed as fetuses to ZIKV at 8 days post-coitus were not smaller than controls. Nevertheless, infectious virus and ZIKV RNA was detected in some, but not all, placentas and fetal brains of KO hamsters. STAT2 KO hamsters may be useful for addressing sexual transmission, pathogenesis, routes of fetal infection, and neurological disease outcomes, and may also be used in antiviral or vaccine studies to identify intervention strategies.

Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence.

In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.

Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China.

In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.

Zika Virus Update: More on an Emerging Arboviral Disease in the Western Hemisphere.

Zika virus has captivated the world with its quick spread throughout the Western Hemisphere. Increased emphasis has been placed on the infection of pregnant women and subsequent adverse and severe effects in the developing fetus and newborn. This article supplements a previous article and provides updated information on new and evolving evidence that strengthens the association between Zika virus and unique congenital and neurologic diseases, updates what is known about the epidemiology of the disease, and provides new and updated material for primary care providers as they counsel patients who may be exposed or infected. With the extent of disease spread, it is expected that Zika virus will become endemic to the Western Hemisphere and will change the public health parameters and approach in this area of the world. (Disaster Med Public Health Preparedness. 2017;11:163-167).

Zika virus, a novel mosquito-borne congenital virus infection.

Anxiety, depression, and quality of life in mothers of newborns with microcephaly and presumed congenital Zika virus infection: a follow-up study during the first year after birth.

A review of Zika virus infections in pregnancy and implications for antenatal care in Singapore.

Given the consensus that there is a causal relationship between Zika virus (ZIKV) infection in pregnancy and congenital Zika syndrome (CZS), clinicians must be prepared to manage affected patients despite the numerous gaps in current knowledge. The clinical course in pregnancy appears similar to that in non-pregnant women, although viraemia may be prolonged. ZIKV infection can be diagnosed by serum and urine reverse transcription-polymerase chain reaction, but commercially available serological tests are currently unreliable in dengue-endemic regions. Although vertical transmission can occur at any time during gestation, first- and second-trimester infections have the highest risk of developing central nervous system anomalies. Aberrant fetal growth and pregnancy loss may also occur. Serial ultrasonography should be conducted for infected cases. Without a vaccine, pregnant women should be advised to minimise mosquito bites and reduce sexual transmission risk. Overall, the absolute risk of CZS arising amid a ZIKV outbreak appears relatively low.