PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

cell migration - Top 30 Publications

Lectin BS-I inhibits cell migration and invasion via AKT/GSK-3β/β-catenin pathway in hepatocellular carcinoma.

Hepatocellular carcinoma (HCC) is most common malignant cancer worldwide; however, the mortality rate of HCC remains high due to the invasion and metastasis of HCC. Thus, exploring novel treatments to prevent the invasion of HCC is needed for improving clinical outcome of this fatal disease. In this study, we identified lectin from Bandeiraea simplicifolia seeds (BS-I) binds to metastasis-associated HCC cell surface glycans by a lectin microarray and inhibits HCC cell migration and invasion through downregulating the matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and urokinase-type plasminogen activator (uPA) production. These effects of BS-I were mediated by inhibiting the activation of AKT/GSK-3β/β-catenin pathway and depended on specificity of lectin BS-I binding to GalNAc. GSK3β inhibitors rescued BS-I-mediated inhibition of migration and invasion of HCC cell. Further, we identified that lectin BS-I interacts with sGrp78, affects membrane localization of sGrp78 and attenuates the binding of sGrp78 and p85 to inhibit the activation of AKT/GSK-3β/β-catenin pathway. Overexpression of Grp78 or P85 rescues BS-I-mediated inhibition of migration and invasion of HCC cell. These findings demonstrated for the first time that BS-I can act as a novel potential drug to prevent the invasion of HCC.

Reduction of organelle motility by removal of potassium and other solutes.

There are surprisingly few studies that describe how the composition of cell culture medium may affect the trafficking of organelles. Here we utilize time lapse multi-channel fluorescent imaging to show that short term exposure of Huh-7 cells to medium lacking potassium, sodium, or chloride strongly reduces but does not eliminate the characteristic back and forth and cell-traversing movement of fluorescent EGF (FL-EGF) containing organelles. We focused on potassium because of its relatively low abundance in media and serum and its energy requiring accumulation into cells. Upon exposure to potassium free medium, organelle motility declined steadily through 90 min and then persisted at a low level. Reduced motility was confirmed in 5 independent cell lines and for organelles of the endocytic pathway (FL-EGF and Lysotracker), autophagosomes (LC3-GFP), and mitochondria (TMRE). As has been previously established, potassium free medium also inhibited endocytosis. We expected that diminished cellular metabolism would precede loss of organelle motility. However, extracellular flux analysis showed near normal mitochondrial oxygen consumption and only a small decrease in extracellular acidification, the latter suggesting decreased glycolysis or proton efflux. Other energy dependent activities such as the accumulation of Lysotracker, TMRE, DiBAC4(3), and the exclusion of propidium iodide remained intact, as did the microtubule cytoskeleton. We took advantage of cell free in vitro motility assays and found that removal of potassium or sodium from the reconstituted cytosolic medium decreased the movement of endosomes on purified microtubules. The results indicate that although changes in proton homeostasis and cell energetics under solute depletion are not fully understood, potassium as well as sodium appear to be directly required by the motile machinery of organelles for optimal trafficking.

New Antimony Selenide / Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum Dots Co-sensitized Solar Cell.

A novel assembly of a photocathode and photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb2Se3) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles up as the photocathode. Here, near infrared (NIR) light absorbing Sb2Se3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C)-fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb2Se3 NPs, with a band gap of 1.13 eV, upon illumination release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb2Se3, coupled with a work function at 4.63 eV, also facilitate electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated where a TiO2/CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23 % that is obtained by using a TiO2/CdS pho-toanode (without GQDs) with the same CE. GQDs due to a superior conductance, impact efficiency more than Sb2Se3 NPs do. The best PCE of a TiO2/CdS/GQDs-nS2-/Sn2--Sb2Se3/NiO/C-fabric cell is 5.96% (0.11 cm2 area), which when replicated on a smaller area of 0.06 cm2, is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement which augments the cell performance is furnished in detail in these studies.

The miR-203 inhibits cell proliferation, invasion, and migration of non-small cell lung cancer by downregulating RGS17.

The involvement of the RGS17 oncogene in promotion of non-small cell lung cancer (NSCLC) has been reported, but the regulation mechanism in NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression, and their dysregulation has been implicated in tumorigenesis. To understand the role of microRNAs in RGS17-induced NSCLC, we showed that miR-203 was downregulated during tumorigenesis, and inhibited the proliferation and invasion of lung cancer cells. We then determined if miR-203 regulated NSCLC by targeting RGS17. To characterize the regulatory effect of miR-203 on RGS17, we used lung cancer cell lines, A549 and Calu-1, and the constructed miR-203 and RGS17 overexpression vectors. The CCK8 kit was used to determine the cell proliferation, and the Transwell(®) assay was used to measure cell invasion and migration. RT-PCR, western blots, and immunofluorescence were used to analyze the expression of miR-203 and RGS17, and the luciferase reporter assay was used to examine the interaction between miR-203 and RGS17. Nude mice were used to characterize in vivo tumor growth regulation. The expression of miR-203 inhibited the proliferation, invasion, and migration of lung cancer cell lines A549 and Calu-1 by targeting RGS17. The regulatory effect of miR-203 was inhibited after overexpression of RGS17. The luciferase reporter assay showed that miR-203 downregulated RGS17 by direct integration into the 3'-UTR of RGS17 mRNA. In vivo studies showed that the expression of miR-203 significantly inhibited the growth of tumors. Taken together, the results suggested that the expression of miR-203 inhibited tumor growth and metastasis by targeting RGS17. This article is protected by copyright. All rights reserved.

Tangential migration of corridor guidepost neurons contributes to anxiety circuits.

In mammals, thalamic axons are guided internally towards their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis (BNST), which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits. This article is protected by copyright. All rights reserved.

miR-122 Promotes Metastasis of Clear-Cell Renal Cell Carcinoma by Downregulating Dicer.

Although overall downregulation of microRNAs (miRNAs) is a general feature of clear-cell renal cell carcinoma (ccRCC), several miRNAs are consistently upregulated, among which miR-122 was markedly increased in ccRCC tissues. This study aims to determine the functional importance and underlying mechanism of miR-122 in ccRCC metastasis. Here we demonstrate that the expression of miR-122 increased in ccRCC tissues, and higher miR-122 expression was found in ccRCC tissues with metastatic disease than in those without metastasis. The increased miR-122 levels were associated with poor metastasis-free survival in ccRCC patients with localized disease. Dicer was validated as a direct functional target of miR-122. Overexpression of miR-122 promoted migration and invasion of ccRCC cells in vitro and metastatic behavior of ccRCC cells in vivo. Inhibition of miR-122 attenuated this metastatic phenotype in vitro. Importantly, miR-122 exerted its pro-metastatic properties in ccRCC cells by downregulating Dicer and its downstream effector, the miR-200 family, thereby inducing epithelial-mesenchymal transition (EMT). Our results suggest an important role of the miR-122/Dicer/miR-200s/EMT pathway in ccRCC metastasis. Furthermore, miR-122 may serve as a biomarker for discriminating ccRCC with metastatic potential. This article is protected by copyright. All rights reserved.

Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography.

Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and bone mineralization within bone tissue engineering scaffolds in situ. This article is protected by copyright. All rights reserved.

Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration.

Fibroblast growth factor (FGF) 9 has oncogenic activity and plays an important role in the development of ovarian, lung, prostate, and gastric cancers. In the present study, with the aim of reducing the cost of utilizing growth factors in cancer research, a simple and efficient method for the preparation of recombinant human (rh)FGF9 in Escherichia coli was established. The rhFGF9 fusion protein (6 × His-TEV-rhFGF9) and the native protein released by tobacco etch virus (TEV) protease were obtained using a Ni-NTA system, with > 95% purity. Both purified forms of rhFGF9, with and without fusion tags, significantly stimulated the proliferation of NIH3T3 cells. The FGF9 subfamily, including FGF9, FGF16, and FGF20, in addition to rhFGF16, rhFGF9, and rhFGF20, were shown to stimulate the proliferation and migration of HuH7 human hepatocellular carcinoma (HCC) cells. Mechanistic studies revealed that the stimulation of HuH7 cell proliferation and migration with rhFGF9 and rhFGF20 were associated with the activation of the extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) pathways and matrix metalloproteinase-26 (MMP26). Inhibition of the ERK and NF-κB pathways blocked cell migration, and NF-κB was demonstrated to be regulated by ERK. Therefore, the present study demonstrates a simple method for the preparation of biologically active rhFGF9 protein. Furthermore, the results indicate that exogenous rhFGF9- and rhFGF20-activated ERK/NF-κB signal transduction pathways play important roles in the regulation of HCC cell proliferation and migration, and this discovery helps to find the potential for new solutions of the treatment of liver cancer.

Half sandwich Ru(ii)-acylthiourea complexes: DNA/HSA-binding, anti-migration and cell death in a human breast tumor cell line.

Organometallic ruthenium complexes as potential anticancer agents have been explored due to their suitable properties, such as stability in the solid state and in solution, water solubility and low toxicity. In this study, eight metal complexes of this class were synthesized, characterized and their important biological activities against a human breast tumor cell line (MDA-MB-231) were studied. Complexes 1-8 were obtained in good yields and have been characterized by satisfactory elemental analyses, IR, 1D and 2D (1)H and (13)C{(1)H} NMR, UV-Vis spectroscopy, cyclic voltammetry, ESI-MS and X-ray diffractometry (1, 2, 3 and 6). All complexes exhibit growth inhibition on human breast and lung tumor cell lines, with IC50 values ranging from 6.0 to 45.0 μM in 48 h. Four compounds were selected to evaluate the changes in the morphology, clonogenic, migration, cell cycle arrest and cell death in MDA-MB-231 cells. The complexes are able to induce morphological changes and inhibit the size, number of colonies and cell migration, and induce cell cycle arrest in the sub-G1 phase and apoptosis cell death. The interaction of the complexes with DNA was determined by performing spectroscopic titration, a competitive assay with thiazole orange, circular dichroism, gel electrophoresis and interactions with guanosine or guanosine monophosphate by (1)H NMR, indicating the non-covalent interaction. The HSA binding affinity measured by spectrophotometric titration, revealed the hydrophobic and spontaneous association with the human protein. Overall, the studies indicated that these metal complexes are potential agents against MDA-MB-231 cells, encouraging us to continue studies of these types of compounds.

KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis.

A deeper understanding of the metastatic process is required for the development of new therapies that improve patient survival. Metastatic tumor cell growth and survival in distant organs is facilitated by the formation of a pre-metastatic niche that is composed of hematopoietic cells, stromal cells and extracellular matrix (ECM). Perivascular cells, including vascular smooth muscle cells (vSMCs) and pericytes, are involved in new vessel formation and in promoting stem cell maintenance and proliferation. Given the well-described plasticity of perivascular cells, we hypothesized that perivascular cells similarly regulate tumor cell fate at metastatic sites. We used perivascular-cell-specific and pericyte-specific lineage-tracing models to trace the fate of perivascular cells in the pre-metastatic and metastatic microenvironments. We show that perivascular cells lose the expression of traditional vSMC and pericyte markers in response to tumor-secreted factors and exhibit increased proliferation, migration and ECM synthesis. Increased expression of the pluripotency gene Klf4 in these phenotypically switched perivascular cells promoted a less differentiated state, characterized by enhanced ECM production, that established a pro-metastatic fibronectin-rich environment. Genetic inactivation of Klf4 in perivascular cells decreased formation of a pre-metastatic niche and metastasis. Our data revealed a previously unidentified role for perivascular cells in pre-metastatic niche formation and uncovered novel strategies for limiting metastasis.

Neutrophils: a cornerstone of liver ischemia and reperfusion injury.

Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.Laboratory Investigation advance online publication, 18 September 2017; doi:10.1038/labinvest.2017.90.

The dosage-dependent effect exerted by the NM23-H1/H2 homolog NDK-1 on distal tip cell migration in C. elegans.

Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in ndk-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.Laboratory Investigation advance online publication, 18 September 2017; doi:10.1038/labinvest.2017.99.

Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer.

Mesenchymal stem cells (MSCs), exhibiting tumor-tropic and migratory potential, can serve as cellular carriers to improve the effectiveness of anticancer agents. However, several challenges, such as the safety issue, the limited drug loading, the conservation of stemness and migration of MSCs, still remain in the MSC-based delivery system. In the present study, a novel nano-engineered MSC delivery system was established by loading doxorubicin (DOX)-polymer conjugates for the systemic treatment of pulmonary metastasis of breast cancer. For the first time, a dual drug-loaded mode, endocytosis and membrane-bound, was adopted to achieve the maximum amount of DOX conjugates in MSCs. The in vitro studies revealed the loaded MSCs possessed multifunctional properties, including preservation of the stemness and migration of MSCs, excellent stability of drug loading, acid sensitive drug release and obvious cytotoxicity against 4T1 cells. The in vivo studies confirmed that the loaded MSCs mainly located and long stayed in the lung where the foci of metastatic tumor situated. Importantly, loaded MSCs can significantly inhibit the tumor growth and prolong the life span of tumor-bearing mice in contrast with DOX and DOX-conjugate. The present loaded MSCs system suggested a promising strategy to solve several issues existed in cell-based delivery systems. Especially for the problem of low drug loading, the strategy, simultaneously loading nanodrug in cells' internal and membrane, might be the most desirable method so far and could be developed as a generalizable manner for cell-mediated tumor-targeted therapy.

Mimicking the Bioactivity of Fibroblast Growth Factor-2 Using Supramolecular Nanoribbons.

Fibroblast growth factor (FGF-2) is a multifunctional growth factor that has pleiotropic effects in different tissues and organs. In particular, FGF-2 has a special role in angiogenesis, an important process in development, wound healing, cell survival, and differentiation. Therefore, incorporating biological agents like FGF-2 within therapeutic biomaterials is a potential strategy to create angiogenic bioactivity for the repair of damaged tissue caused by trauma or complications that arise from age and/or disease. However, the use of growth factors as therapeutic agents can be costly and does not always bring about efficient tissue repair due to rapid clearance from the targeted site. An alternative would be a stable supramolecular nanostructure with the capacity to activate the FGF-2 receptor that can also assemble into a scaffold deliverable to tissue. We report here on peptide amphiphiles that incorporate a peptide known to activate the FGF-2 receptor and peptide domains that drive its self-assembly into supramolecular nanoribbons. These FGF2-PA nanoribbons displayed the ability to increase the proliferation and migration of the human umbilical vein endothelial cells (HUVECs) in vitro to the same extent as the native FGF-2 protein at certain concentrations. We confirmed that this activity was specific to the FGFR1 signaling pathway by tracking the phosphorylation of downstream signaling effectors such ERK1/2 and pH3. These results indicated the specificity of FGF2-PA nanoribbons in activating the FGF-2 signaling pathway and its potential application as a supramolecular scaffold that can be used in vivo as an alternative to the encapsulation and delivery of the native FGF-2 protein.

Cd226(-/-) natural killer cells fail to establish stable contacts with cancer cells and show impaired control of tumor metastasis in vivo.

CD226 is an activating receptor expressed on natural killer (NK) cells, CD8(+) T cells, and other immune cells. Upon binding to its ligands expressed on target cells, CD226 activates intracellular signaling that triggers cytokine production and degranulation in NK cells. However, the role of CD226 in contact dynamics between NK and cancer cells has remained unclear. Our time-lapse images showed that individual wild-type CD226(+) NK cells contacted B16F10 melanoma cells for 23.7 min, but Cd226(-/-) NK cells only for 12.8 min, although both NK cell subsets showed equal contact frequency over 4 h. On the surface of B16F10 cells, CD226(+) cells stayed at the same site with oscillating movement (named stable contact), while Cd226(-/-) NK cells moved around at a velocity of 4 μm/min (named unstable contact). Consequently, Cd226(-/-) NK cells did not kill B16F10 cells in vitro and did not inhibit their metastasis into the lung in vivo. Taken together, our data demonstrate that CD226 enables prolonged stable interaction between NK and cancer cells, which is needed for efficient killing of cancer cells.

Investigation of proliferation and migration of tongue squamous cell carcinoma promoted by three chemokines, MIP-3α, MIP-1β, and IP-10.

The aim of this work was to investigate the role of chemokines in proliferation and migration of tongue squamous cell carcinoma (TSCC). Out of the 80 cytokines surveyed by a human cytokine antibody array, three chemokines, macrophage inflammatory protein-3α (MIP-3α), macrophage inflammatory protein-1β (MIP-1β), and interferon gamma-induced protein 10 (IP-10), showed elevated expression in TSCC cells (CAL-27 and UM-1), compared to the oral mucosal epithelial cells. Immunohistochemistry confirmed the high level of expression of MIP-3α in the TSCC tissues, especially in the high clinical stages. Furthermore, Western blot and immunofluorescence staining indicated that C-C chemokine receptor type 5, C-C chemokine receptor type 6, and C-X-C motif chemokine receptor 3, which are the receptors for MIP-3α, MIP-1β, and IP-10, respectively, were expressed in the TSCC cells. Viability assay showed MIP-3α, MIP-1β, and IP-10 led to the proliferation of the CAL-27 cells. Interestingly, MIP-1β and IP-10 also induced apoptosis in the TSCC cells. Transwell invasion assay showed MIP-3α and IP-10 could increase the invasive capability of TSCC cells; consistently, the enzymatic activities of matrix metalloproteinase-2 and matrix metalloproteinase-9 increased in the MIP-3α- and IP-10-treated cells. In summary, our results indicate the expression of MIP-3α, MIP-1β, and IP-10 increased in the TSCC cells. The elevated expression of MIP-3α and IP-10 promoted proliferation and migration of TSCC. These chemokines, along with their receptors, could be potential biomarkers and therapeutic targets for TSCC, especially for those in the high clinical stages.

NanoVelcro-captured CTC number concomitant with enhanced serum levels of MMP7 and MMP9 enables accurate prediction of metastasis and poor prognosis in patients with lung adenocarcinoma.

Lung adenocarcinoma (LADC) is among the most malignant cancers that frequently develops micrometastases even in early stages of the disease. Circulating tumor cell (CTC) number, matrix metalloproteinase (MMP) 7, and MMP9 show great prospects as predictive biomarkers in many tumors. However, the interactions between these biomarkers and the molecular basis of their roles in the metastasis and prognosis of LADC remain unclear. The present study revealed that an elevated CTC count and overexpression of MMP7 and MMP9 correlate with metastasis and clinical progression in LADC patients (n=143). Furthermore, MMP7 and MMP9 upregulation facilitates LADC cell migration in vitro and enhances serum CTC levels in a xenograft mouse model. More importantly, receiver operating characteristic (ROC) curves and Kaplan-Meier analysis confirmed more accurate prediction of metastasis and overall survival (OS) with a combination panel of CTC, MMP7, and MMP9. Taken together, our data show, for the first time, the involvement of MMP7 and MMP9 in the release of CTCs into the peripheral blood, and our data reveal that CTC count and expression of MMP7 and MMP9 can be used together as an effective clinical prediction panel for LADC metastasis and prognosis.

Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible.

Carbon nanotubes (CNTs) are likely to transform the therapeutic and diagnostic fields in biomedicine during the coming years. However, the fragmented vision of their side effects and toxicity in humans has proscribed their use as nanomedicines. Most studies agree that biocompatibility depends on the state of aggregation/dispersion of CNTs under physiological conditions, but conclusions are confusing so far. This study designs an experimental setup to investigate the cytotoxic effect of individualized multiwalled CNTs compared to that of identical nanotubes assembled on submicrometric structures. Our results demonstrate how CNT cytotoxicity is directly dependent on the nanotube dispersion at a given dosage. When CNTs are gathered onto silica templates, they do not interfere with cell proliferation or survival becoming highly compatible. These results support the hypothesis that CNT cytotoxicity is due to the biomimetics of these nanomaterials with the intracellular nanofilaments. These findings provide major clues for the development of innocuous CNT-containing nanodevices and nanomedicines.

Disturbances of systemic and hippocampal insulin sensitivity in macrophage migration inhibitory factor (MIF) knockout male mice lead to behavioral changes associated with decreased PSA-NCAM levels.

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine well known for its role in inflammation enhancement. However, a growing body of evidence is emerging on its role in energy metabolism in insulin sensitive tissues such as hippocampus, a brain region implicated in cognition, learning and memory. We hypothesized that genetic deletion of MIF may result in the specific behavioral changes, which may be linked tо impairments in brain or systemic insulin sensitivity by possible changes of the hippocampal synaptic plasticity. To assess memory, exploratory behavior and anxiety, three behavioral tests were applied on Mif gene-deficient (MIF(-/-)) and "wild type" C57BL/6J mice (WT). The parameters of systemic and hippocampal insulin sensitivity were also determined. The impact of MIF deficiency on hippocampal plasticity was evaluated by analyzing the level of synaptosomal polysialylated-neural cell adhesion molecule (PSA-NCAM) plasticity marker and mRNA levels of different neurotrophic factors. The results showed that MIF(-/-) mice exhibit emphasized anxiety-like behaviors, as well as impaired recognition memory, which may be hippocampus-dependent. This behavioral phenotype was associated with impaired systemic insulin sensitivity and attenuated hippocampal insulin sensitivity, characterized by increased inhibitory Ser(307) phosphorylation of insulin receptor substrate 1 (IRS1). Finally, MIF(-/-) mice displayed a decreased hippocampal PSA-NCAM level and unchanged Bdnf, NT-3, NT-4 and Igf-1 mRNA levels. The results suggest that the lack of MIF leads to disturbances of systemic and hippocampal insulin sensitivity, which are possibly responsible for memory deficits and anxiety, most likely through decreased PSA-NCAM-mediated neuroplasticity rather than through neurotrophic factors.

HZ-6d targeted HERC5 to regulate p53 ISGylation in human hepatocellular carcinoma.

Manipulating the posttranslational modulator of p53 is central in the regulation of its activity and function. ISGylated p53 can be degraded by the 20S proteasome. During this process, HERC5/Ceb1, an IFN-induced HECT-type E3 ligase, mediated p53 ISGylation. In this study, we indicated that HERC5 was over-expressed in both HCC tissue samples and cell lines. Knockdown of HERC5 significantly induced the expression of p53, p21 and Bax/Bcl-2 in HCC cells, resulting in apoptosis augment. Whereas, opposite results were obtained by using HERC5 over-expression. On this basis, we screened a 7, 11-disubstituted quinazoline derivative HZ-6d that could bind to the HERC5 G-rich sequence in vitro. Interestingly, HZ-6d injection effectively delayed the growth of xenografts in nude mice. In vitro, HZ-6d significantly inhibited cell growth, suppressed cell migration, induced apoptosis in HCC cells. Further studies demonstrated the anti-cancer effect of HZ-6d was associated with down-regulation of HERC5 and accumulation of p53. Collectively, we demonstrated that HZ6d is a HERC5 G-quadruplex ligand with anti-tumor properties, an action that may offer an attractive idea for restoration of p53 function in cancers.

Strontium and magnesium ions released from bioactive titanium metal promote early bone bonding in a rabbit implant model.

We have previously developed the "alkali and heat treatment" method to confer bioactivity (bone-bonding ability) to titanium metal (Ti). As strontium (Sr) and magnesium (Mg) ions reportedly promote osteoblastic cell proliferation and differentiation and accelerate bone formation, we improved this method to induce the release of Sr (Sr-Ti) or Mg (Mg-Ti) ions from Ti in a previous study. Here, we evaluated the bioactivity of these novel surface treatments, Sr-Ti and Mg-Ti. In vitro evaluation of cell viability, expression of integrin β1, β catenin, and cyclin D1, osteogenic gene expression, alkaline phosphatase activity, and extracellular mineralization using MC3T3-E1 cells revealed that Sr-Ti and Mg-Ti enhanced proliferation and osteogenic differentiation. In rabbit in vivo studies, Sr-Ti and Mg-Ti also provided greater biomechanical strength and bone-implant contact than the positive control Ti (Ca-Ti), especially at the early stage (4-8 weeks), and maintained these properties for a longer period (16-24 weeks). Advantages of the improved method include process simplicity, applicability for any implant shape, and lack of adverse effects on implant composition and structure. Therefore, our treatment is promising for clinical applications to achieve early bone bonding.

Magnesium (Mg) based Interference Screws Developed for Promoting Tendon Graft Incorporation in Bone Tunnel in Rabbits.

How to enhance tendon graft incorporation into bone tunnels for achieving satisfactory healing outcomes in patients with anterior cruciate ligament reconstruction (ACLR) is one of the most challenging clinical problems in orthopaedic sports medicine. Several studies have recently reported the beneficial effects of Mg implants in bone fracture healing, indicating the use potential of Mg devices in promoting the tendon graft osteointegration. Here, we developed an innovative Mg-based interference screws for fixation of the tendon graft in rabbits underwent ACLR and investigated the biological role of Mg-based implants in the graft healing. The titanium (Ti) interference screw was used as the control. We demonstrated that Mg interference screw significantly accelerated the incorporation of the tendon graft into bone tunnels via multiscale analytical methods including scanning electronic microscopy / energy dispersive spectrometer (SEM/EDS), micro-hardness, micro-Fourier transform infrared spectroscopy (μFTIR), and histology. Our in vivo study showed that Mg implants enhanced the recruitment of bone marrow stromal stem cells (BMSCs) towards peri-implant bone tissue, which may be ascribed to the upregulation of local TGF-β1 and PDGF-BB. Besides, the in vitro study revealed that higher Mg ions was beneficial to the improvement of capability in cell adhesion and osteogenic differentiation of BMSCs. Thus, the enhancement in cell migration, cell adhesion and osteogenic differentiation of BMSCs may contribute to an improved tendon graft osteointegration in the Mg group. Our findings in this work may further facilitate clinical applications of Mg-based interference screws for enhancing tendon graft-bone junction healing in patients indicated for ACLR.

Tissue-Engineered Magnetic Cell Sheet Patches For Advanced Strategies in Tendon Regeneration.

Tendons are powerful 3D biomechanically structures combining a few cells in an intrincated and highly hierarchical niche environment. When tendon homeostasis is compromised, restoration of functionality upon injury is limited and requires alternatives to current augmentation or replacement strategies. Cell sheet technologies are a powerful tool for the fabrication of living extracellular-rich patches towards regeneration of tenotopic defects. Thus, we originally propose the development of magnetically responsive tenogenic patches through magnetic cell sheet (magCSs) technology that enable the remote control upon implantation of the tendon-mimicking constructs. A Tenomodulin positive (TNMD(+)) subpopulation of cells sorted from a crude population of human adipose stem cells (hASCs) previously identified as being prone to tenogenesis was selected for the magCSs patch construction. We investigated the stability, the cellular co-location of the iron oxide nanoparticles (MNPs), as well as the morphology and mechanical properties of the developed magCSs. Moreover, the expression of tendon markers and collagenous tendon-like matrix were further assessed under the actuation of an external magnetic field. Overall, this study confirms the potential to bioengineer tendon patches using a magnetic cell sheet construction with magnetic responsiveness, good mechanoelastic properties and a tenogenic prone stem cell population envisioning cell-based functional therapies towards tendon regeneration.

Alcohol exposure induces chick craniofacial bone defects by negatively affecting cranial neural crest development.

Excess alcohol consumption during pregnancy could lead to fetal alcohol syndrome (FAS). However, the molecular mechanism leading to craniofacial abnormality, a feature of FAS, is still poorly understood. The cranial neural crest cells (NCCs) contribute to the formation of the craniofacial bones. Therefore, NCCs exposed to ethanol was investigated - using chick embryos and in vitro explant culture as experimental models. We demonstrated that exposure to 2% ethanol induced craniofacial defects, which includes parietal defect, in the developing chick fetus. Immunofluorescent staining revealed that ethanol treatment downregulated Ap-2ɑ, Pax7 and HNK-1 expressions by cranial NCCs. Using double-immunofluorescent stainings for Ap-2ɑ/pHIS3 and Ap-2ɑ/c-Caspase3, we showed that ethanol treatment inhibited cranial NCC proliferation and increased NCC apoptosis, respectively. Moreover, ethanol treatment of the dorsal neuroepithelium increased Laminin, N-Cadherin and Cadherin 6B expressions while Cadherin 7 expression was repressed. In situ hybridization also revealed that ethanol treatment up-regulated Cadherin 6B expression but down-regulated slug, Msx1, FoxD3 and BMP4 expressions. In summary, our experimental results demonstrated that ethanol treatment interferes with the production of cranial NCCs by affecting the proliferation and apoptosis of these cells. In addition, ethanol affected the delamination, epithelial-mesenchymal transition (EMT) and cell migration of cranial NCCs, which may have contributed to the etiology of the craniofacial defects.

Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains.

Store Operated Calcium Entry (SOCE) is one of the most important mechanisms for calcium mobilization in to the cell. Two main proteins sustain SOCE: STIM1 that acts as the calcium sensor in the endoplasmic reticulum (ER) and Orai1 responsible for calcium influx upon depletion of ER. There are many studies indicating that SOCE is modulated by the cholesterol content of the plasma membrane (PM). However, a myriad of questions remain unanswered concerning the precise molecular mechanism by which cholesterol modulates SOCE. In the present study we found that reducing PM cholesterol results in the internalization of Orai1 channels, which can be prevented by overexpressing caveolin 1 (Cav1). Furthermore, Cav1 and Orai1 associate upon SOCE activation as revealed by FRET and coimmunoprecipitation assays. The effects of reducing cholesterol were not limited to an increased rate of Orai1 internalization, but also, affects the lateral movement of Orai1, inducing movement in a linear pattern (unobstructed diffusion) opposite to basal cholesterol conditions were most of Orai1 channels moves in a confined space, as assessed by Fluorescence Correlation Spectroscopy, Cav1 overexpression inhibited these alterations maintaining Orai1 into a confined and partially confined movement. These results not only highlight the complex effect of cholesterol regulation on SOCE, but also indicate a direct regulatory effect on Orai1 localization and compartmentalization by this lipid.

Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway.

Endothelial progenitor cells have been shown to differentiate into endothelial cells and to play a pivotal role in vascular homeostasis. Adiponectin has anti-atherogenic and anti-inflammatory properties via directly acting on vascular cells. The aim of the present study is to explore the effect of adiponectin on major functions involved in survival, migration, and tube formation of endothelial progenitor cells and to explore the underlying mechanism. In this study, we transferred adiponectin gene into endothelial progenitor cells via lentiviral vectors and investigated the proliferation, migration and tube formation of these transfected cells. We found that adiponectin is highly expressed in endothelial progenitor cells and promotes their proliferation, migration and tube formation. Western blot data showed that the former two processes were mediated through the AMPK/Akt/eNOS pathway, the latter via the AMPK/eNOS pathway. Use of the AMPK inhibitor (Compound C) or Akt inhibitor (MK-2206) reduced eNOS phosphorylation and attenuated adiponectin-induced endothelial progenitor cell proliferation, migration and tube formation compared to the controls (p < 0.05). Taken together, these data indicated that adiponectin promotes endothelial progenitor cell proliferation and migration via AMPK/Akt/eNOS signaling pathway and promotes tube formation through AMPK/eNOS, suggesting that adiponectin-transduced endothelial progenitor cell transplantation is a potential therapeutic target for vascular disease.

Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin.

Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen type 1 and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes collagen and elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics.

A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay.

Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier to cell migration. It is thus essential to characterize its mechanical behaviour. First, we numerically investigate the visco-elasto-plastic properties of the isolated nucleus during a compression test. This simulation highlights the impact of the mechanical behaviour of the nuclear lamina and the nucleoplasm on the overall plasticity. Second, a whole cell model is developed to simulate a perfusion experiment to study the possible interactions between the cytoplasm and the nucleus. We analyze and discuss the role of the lamina for a wild-type cell model, and a lamin-deficient one, in which the Young's modulus of the lamina is set to 1% of its nominal value. This simulation suggests an interplay between the cytoplasm and the nucleoplasm, especially in the lamin-deficient cell, showing the need of a stiffer nucleoplasm to maintain nuclear plasticity.

Endothelial microparticle-promoted inhibition of vascular remodeling is abrogated under hyperglycaemic conditions.

Endothelial microparticles (EMPs) inhibit vascular remodeling by transferring functional microRNA (miRNA) into target vascular smooth muscle cells (VSMCs). Because EMPs are increased in diabetic patients and potentially linked to vascular complications in diabetes mellitus, we sought to determine whether effects of EMPs generated under high glucose concentration on vascular remodeling might differ from EMPs derived from untreated cells.

Cadherin-11 promotes neural crest cell spreading by reducing intracellular tension-mapping adhesion and mechanics in neural crest explants by atomic force microscopy.

During development cranial neural crest cells (NCCs) display a striking transition from collective to single-cell migration, but the mechanisms enabling individual NCCs to separate from the neural crest tissue are still incompletely understood. In this study we have employed atomic force microscopy (AFM) to investigate potential adhesive and mechanical changes associated with the dissociation of individual cells from cohesive Xenopus NCC explants at early stages of migration. AFM-based single-cell force spectroscopy (SCFS) revealed a uniform distribution of cell-cell adhesion forces within NCC explants, including semi-detached leader cells in the process of delaminating from the explant edge. This suggested that dissociation from the cell sheet may not require prior weakening of cell-cell contacts. However, mapping NCC sheet elasticity by AFM microbead indentation demonstrated strongly reduced cell stiffness in semi-detached leader cells compared to neighbouring cells in the NCC sheet periphery. Reduced leader cell stiffness coincided with enhanced cell spreading and high substrate traction, indicating a possible mechano-regulation of leader cell delamination. In support, AFM elasticity measurements of individual NCCs in optical side view mode demonstrated that reducing cell tension by inhibiting actomyosin contractility induces rapid spreading, possibly maximizing cell-substrate interactions as a result. Depletion of cadherin-11, a classical cadherin with an essential role in NCC migration and substrate adhesion, prevented the tension reduction necessary for NCC spreading, both in individual cells and at the edge of explanted sheets. In contrast, overexpression of cadherin-11 accelerated spreading of both individual cells and delaminating leader cells. As cadherin-11 expression increases strongly during NCC migration, this suggests an important role of cadherin-11 in regulating NCC elasticity and spreading at later stages of NCC migration. We therefore propose a model in which high tension at the NCC sheet periphery prevents premature NCC spreading and delamination during early stages of migration, while a cadherin-11-dependent local decrease in cell tension promotes leader cell spreading and delamination at later stages of migration.