PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

cell trafficking - Top 30 Publications

Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett's oesophagus by modulating integrin-αv trafficking.

The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α3 , α4, α5 , α6 and αν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-αν via effects on endocytic recycling processes. Increased expression of integrin-αv was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-αν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-αν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin αν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD.

Preliminary studies on the use of pertussis toxin for the modulation of intravaginal SIV transmission in rhesus macaques.

Pertussis toxin (PTX) blocks GPCR signaling resulting in the inhibition of chemotaxis/cell adhesion. It was reasoned that inhibition of cell trafficking may be an approach to prevent HIV/SIV transmission.

Sodium Channel Trafficking.

Voltage-gated sodium channels (VGSC) are critical determinants of cellular electrical activity through the control of initiation and propagation of action potential. To ensure this role, these proteins are not consistently delivered to the plasma membrane but undergo drastic quality controls throughout various adaptive processes such as biosynthesis, anterograde and retrograde trafficking, and membrane targeting. In pathological conditions, this quality control could lead to the retention of functional VGSC and is therefore the target of different pharmacological approaches. The present chapter gives an overview of the current understanding of the facets of VGSC life cycle in the context of both cardiac and neuronal cell types.

Pharmacological Chaperones as Potential Therapeutic Strategies for Misfolded Mutant Vasopressin Receptors.

Pharmacological chaperones recently opened new possibilities in G protein-coupled receptor drug discovery. Even more interestingly, some unique ligands combine pharmacological chaperoning and biased agonism properties, boosting their therapeutic interest in many human diseases resulting from G protein-coupled receptor mutation and misfolding. These compounds displaying dual characteristics would constitute a perfect treatment for congenital Nephrogenic Diabetes Insipidus, a typical conformational disease. This X-linked genetic pathology is mostly associated with inactivating mutations of the renal arginine-vasopressin V2 receptor leading to misfolding and intracellular retention of the receptor, causing the inability of patients to concentrate their urine in response to the antidiuretic hormone. Cell-permeable pharmacological chaperones have been successfully challenged to restore plasma membrane localization of many V2 receptor mutants. In addition, different classes of specific ligands such as antagonists, agonists as well as biased agonists of the V2 receptor have proven their usefulness in rescuing mutant receptor function. This is particularly relevant for small-molecule biased agonists which only trigger Gs protein activation and cyclic adenosine monophosphate production, the V2-induced signaling pathway responsible for water reabsorption. In parallel, high-throughput screening assays based on receptor trafficking rescue approaches have been developed to discover novel V2 pharmacological chaperone molecules from different chemical libraries. These new hit compounds, which still need to be pharmacologically characterized and functionally tested in vivo, represent promising candidates for the treatment of congenital Nephrogenic Diabetes Insipidus.

Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system.

Membrane tethering is a fundamental process essential for compartmental specificity of intracellular membrane trafficking in eukaryotic cells. Rab-family small GTPases and specific sets of Rab-interacting effector proteins, including coiled-coil tethering proteins and multisubunit tethering complexes, have been reported to be responsible for membrane tethering. However, whether and how these key components directly and specifically tether subcellular membranes still remains enigmatic. Using chemically defined proteoliposomal systems reconstituted with purified human Rab proteins and synthetic liposomal membranes to study the molecular basis of membrane tethering, we established here that Rab-family GTPases have a highly conserved function to directly mediate membrane tethering, even in the absence of any types of Rab effectors such as the so-called tethering proteins. Moreover, we demonstrate that membrane tethering mediated by endosomal Rab11a is drastically and selectively stimulated by its cognate Rab effectors, class V myosins (Myo5A and Myo5B), in a GTP-dependent manner. Of note, Myo5A and Myo5B exclusively recognized and cooperated with the membrane-anchored form of their cognate Rab11a to support membrane tethering mediated by trans-Rab assemblies on apposing membranes. Our findings support the novel concept that Rab-family proteins provide a bona fide membrane tether to physically and specifically link two distinct lipid bilayers of subcellular membranes. They further indicate that Rab-interacting effector proteins, including class V myosins, can regulate these Rab-mediated membrane tethering reactions.

AIPL1: A specialized chaperone for the phototransduction effector.

Molecular chaperones play pivotal roles in protein folding, quality control, assembly of multimeric protein complexes, protein trafficking, stress responses, and other essential cellular processes. Retinal photoreceptor rod and cone cells have an unusually high demand for production, quality control, and trafficking of key phototransduction components, and thus, require a robust and specialized chaperone machinery to ensure the fidelity of sensing and transmission of visual signals. Misfolding and/or mistrafficking of photoreceptor proteins are known causes for debilitating blinding diseases. Phosphodiesterase 6, the effector enzyme of the phototransduction cascade, relies on a unique chaperone aryl hydrocarbon receptor (AhR)-interacting protein-like 1 (AIPL1) for its stability and function. The structure of AIPL1 and its relationship with the client remained obscure until recently. This review summarizes important recent advances in understanding the mechanisms underlying normal function of AIPL1 and the protein perturbations caused by pathogenic mutations.

New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond.

Regions of MRAP2 required for the inhibition of orexin and prokineticin receptor signaling.

The Melanocortin Receptor Accessory Protein 2 (MRAP2) regulates the activity of several GPCRs involved in the control of food intake and energy expenditure. While MRAP2 was originally thought to exclusively interact with melanocortin receptors we have recently shown that it interacts with and inhibits the trafficking and signaling of the prokineticin receptor 1 (PKR1). In this study we demonstrate a new role of MRAP2 in the regulation of the orexin receptor 1 (OX1R) and identify the specific regions of MRAP2 required for the regulation of OX1R and PKR1. Importantly, like MC4R and PKRs, OX1R is predominately expressed in the brain where it regulates food intake. By demonstrating that MRAP2 modulates the activity of OX1R we further establish the critical role of MRAP2 in the control of energy homeostasis.

Seeing the endomembrane system for the trees: Evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking.

Plant cells show many signs of a unique evolutionary history. This is seen in the system of intracellular organelles and vesicle transport pathways plants use to traffic molecular cargo. Bioinformatic and cell biological work in this area is beginning to tackle the question of how plant cells have evolved, and what this tells us about the evolution of other eukaryotes. Key protein families with membrane trafficking function, including Rabs, SNAREs, vesicle coat proteins, and ArfGAPs, show patterns of evolution that indicate both specialization and conservation in plants. These changes are accompanied by changes at the level of organelles and trafficking pathways between them. Major specializations include losses of several ancient Rabs, novel functions of many proteins, and apparent modification of trafficking in endocytosis and cytokinesis. Nevertheless, plants show extensive conservation of ancestral membrane trafficking genes, and conservation of their ancestral function in most duplicates. Moreover, plants have retained several ancient membrane trafficking genes lost in the evolution of animals and fungi. Considering this, plants such as Arabidopsis are highly valuable for investigating not only plant-specific aspects of membrane trafficking, but also general eukaryotic mechanisms.

Mitochondria chaperone GRP75 moonlighting as a cell cycle controller to derail endocytosis provides an opportunity for nanomicrosphere intracellular delivery.

Understanding how cancer cells regulate endocytosis during the cell cycle could lead us to capitalize this event pharmacologically. Although certain endocytosis pathways are attenuated during mitosis, the endocytosis shift and regulation during the cell cycle have not been well clarified. The conventional concept of glucose-regulated proteins (GRPs) as protein folding chaperones was updated by discoveries that translocated GRPs assume moonlighting functions that modify the immune response, regulate viral release, and control intracellular trafficking. In this study, GRP75, a mitochondria matrix chaperone, was discovered to be highly expressed in mitotic cancer cells. Using synchronized cell models and the GRP75 gene knockdown and ectopic overexpression strategy, we showed that: (1) clathrin-mediated endocytosis (CME) was inhibited whereas clathrin-independent endocytosis (CIE) was unchanged or even up-regulated in the cell cycle M-phase; (2) GRP75 inhibited CME but promoted CIE in the M-phase, which is largely due to its high expression in cancer cell mitochondria; (3) GRP75 targeting by its small molecular inhibitor MKT-077 enhanced cell cycle G1 phase-privileged CME, which provides an opportunity for intracellular delivery of nanomicrospheres sized from 40 nm to 100 nm. Together, our results revealed that GRP75 moonlights as a cell cycle controller and endocytosis regulator in cancer cells, and thus has potential as a novel interference target for nanoparticle drugs delivery into dormant cancer cells.

Phosphorylated CXCR4 expression has a positive prognostic impact in colorectal cancer.

The CXCL12-CXCR4 chemokine axis plays an important role in cell trafficking as well as in tumor progression. In colorectal cancer (CRC), the chemokine receptor CXCR4 has been shown to be an unfavorable prognostic factor in some studies, however, the role of its activated (phosphorylated) form, pCXCR4, has not yet been evaluated. Here, we aimed to investigate the prognostic value of CXCR4 and pCXCR4 in a large cohort of CRC patients.

Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism.

TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca(2+) permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a "move upward" motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca(2+), and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.

A Mucosal and Cutaneous Chemokine Ligand for the Lymphocyte Chemoattractant Receptor GPR15.

Chemoattractants control lymphocyte recruitment from the blood, contributing to the systemic organization of the immune system. The G protein-linked receptor GPR15 mediates lymphocyte homing to the large intestines and skin. Here we show that the 9 kDa CC-motif containing cationic polypeptide AP57/colon-derived sushi containing domain-2 binding factor (CSBF), encoded by C10orf99 in the human and 2610528A11Rik in the mouse, functions as a chemokine ligand for GPR15 (GPR15L). GPR15L binds GPR15 and attracts GPR15-expressing T cells including lymphocytes in colon-draining lymph nodes and Vγ3(+) thymic precursors of dermal epithelial T cells. Patterns of GPR15L expression by epithelial cells in adult mice and humans suggest a homeostatic role for the chemokine in lymphocyte localization to the large intestines, as well as a role in homing to the epidermis during wound healing or inflammation. GPR15L is also significantly expressed in squamous mucosa of the oral cavity and esophagus with still poorly defined regulation. Identification of the chemotactic activity of GPR15L adds to its reported antibacterial and tumor cell growth regulatory functions and suggests the potential of targeting GPR15L-GPR15 interactions for modulation of mucosal and cutaneous inflammation.

Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia.

Tisagenlecleucel (CTL019) is an investigational immunotherapy that involves reprogramming a patient's own T cells with a transgene encoding a chimeric antigen receptor to identify and eliminate CD19-expressing cells. We previously reported that CTL019 achieved impressive clinical efficacy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL), including the expansion and persistence of CTL019 cells, which correlates with response to therapy. Here, we performed formal cellular kinetic analyses of CTL019 in a larger cohort of 103 patients treated with CTL019 in 2 different diseases (ALL and CLL). CTL019 was measured in peripheral blood and bone marrow using quantitative polymerase chain reaction and flow cytometry. CTL019 levels in peripheral blood typically peaked at 10 to 14 days postinfusion and then declined slowly over time. Patients with complete response (CR)/CR with incomplete count recovery had higher levels of CTL019 in peripheral blood, with greater Cmax and AUC values compared with nonresponding patients (P < .0001 for each). CTL019 transgene levels were measurable up to 780 days in peripheral blood. CTL019 trafficking and persistence were observed in bone marrow and cerebrospinal fluid. CTL019 expansion correlated with severity of cytokine release syndrome (CRS) and preinfusion tumor burden in pediatric ALL. The results described herein are the first detailed formal presentation of cellular kinetics across 2 diseases and highlight the importance of the application of in vivo cellular kinetic analyses to characterize clinical efficacy and CRS severity associated with CTL019 therapy.

Coordinating the uncoordinated: UNC119 trafficking in cilia.

Constructing the distinct subcellular environment of the cilium relies in a large part upon intraflagellar transport (IFT) proteins, which traffic cargo both to and within the cilium. However, evidence from the last 10 years suggests that IFT alone is not sufficient to generate the ciliary environment. One essential factor is UNC119, which interacts with known IFT molecular switches to transport ciliary cargos. Despite its apparent importance in ciliary trafficking though, human UNC119 mutations have only rarely been associated with diseases commonly linked with ciliopathies. This review will outline the trafficking pathways required for constructing the cilium by highlighting UNC119's role and the complexities involved in ciliary trafficking. Finally, despite important roles for UNC119 in cilia, UNC119 proteins also interact with non-ciliary proteins to affect other cellular processes.

Vps35-deficiency impairs SLC4A11 trafficking and promotes corneal dystrophy.

Vps35 (vacuolar protein sorting 35) is a major component of retromer that selectively promotes endosome-to-Golgi retrieval of transmembrane proteins. Dysfunction of retromer is a risk factor for the pathogenesis of Parkinson's disease (PD) and Alzheimer's disease (AD). However, Vps35/retromer's function in the eye or the contribution of Vps35-deficiency to eye degenerative disorders remains to be explored. Here we provide evidence for a critical role of Vps35 in mouse corneal dystrophy. Vps35 is expressed in mouse and human cornea. Mouse cornea from Vps35 heterozygotes (Vps35+/-) show features of dystrophy, such as loss of both endothelial and epithelial cell densities, disorganizations of endothelial, stroma, and epithelial cells, excrescences in the Descemet membrane, and corneal edema. Additionally, corneal epithelial cell proliferation was reduced in Vps35-deficient mice. Intriguingly, cell surface targeting of SLC4A11, a membrane transport protein (OH- /H+ /NH3 /H2O) of corneal endothelium, whose mutations have been identified in patients with corneal dystrophy, was impaired in Vps35-deficient cells and cornea. Taken together, these results suggest that SLC4A11 appears to be a Vps35/retromer cargo, and Vps35-regulation of SLC4A11 trafficking may underlie Vps35/retromer regulation of corneal dystrophy.

A Rab5 GTPase module is important for autophagosome.

In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure.

The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease.

Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

Legionella blocks autophagy by cleaving STX17 (syntaxin 17).

Pathogens subvert host defense systems including autophagy and apoptosis for their survival and proliferation. Legionella pneumophila is a Gram-negative bacterium that grows in alveolar macrophages and causes severe pneumonia. Early during infection Legionella secretes effector proteins that convert the plasma membrane-derived vacuole containing Legionella into an endoplasmic reticulum (ER)-like replicative vacuole. These vacuoles ultimately fuse with the ER, where the pathogen replicates. Recently, we showed that one of the effectors, Lpg1137, is a serine protease that targets the mitochondria-associated ER membrane (MAM) and degrades STX17 (syntaxin 17), a SNARE implicated in macroautophagy/autophagy as well as mitochondria dynamics and membrane trafficking in fed cells. Degradation of STX17 blocks autophagy and BAX-induced apoptosis.

Autophagy enables retromer-dependent plasma membrane translocation of SLC2A1/GLUT to enhance glucose uptake.

Macroautophagy/autophagy is traditionally viewed as an intracellular catabolic pathway that recycles core metabolites during starvation or stress. Recently, we found that autophagy also functions in the control of glucose uptake from the extracellular environment by facilitating cell surface expression of the glucose transporter SLC2A1/GLUT1. In response to increased glycolytic demand or acute glucose starvation, autophagosome induction titrates the RabGAP protein TBC1D5 away from its inhibitory interaction with the retromer complex and into MAP1LC3(+) compartments. This resulting increase in retromer functional activity enhances SLC2A1 cell surface trafficking. Overall, these results identify an important role of autophagy in coordinating glucose uptake from the extracellular milieu by influencing the plasma membrane trafficking of SLC2A1.

Intracellular Trafficking Pathways of Edwardsiella tarda: From Clathrin- and Caveolin-Mediated Endocytosis to Endosome and Lysosome.

Edwardsiella tarda is a Gram-negative bacterium that can infect a broad range of hosts including humans and fish. Accumulating evidences have indicated that E. tarda is able to survive and replicate in host phagocytes. However, the pathways involved in the intracellular infection of E. tarda are unclear. In this study, we examined the entry and endocytic trafficking of E. tarda in the mouse macrophage cell line RAW264.7. We found that E. tarda entered RAW264.7 and multiplied intracellularly in a robust manner. Cellular invasion of E. tarda was significantly impaired by inhibition of clathrin- and caveolin-mediated endocytic pathways and by inhibition of endosome acidification, but not by inhibition of macropinocytosis. Consistently, RAW264.7-infecting E. tarda was co-localized with clathrin, caveolin, and hallmarks of early and late endosomes, and intracellular E. tarda was found to exist in acid organelles. In addition, E. tarda in RAW264.7 was associated with actin and microtubule, and blocking of the functions of these cytoskeletons by inhibitors significantly decreased E. tarda infection. Furthermore, formaldehyde-killed E. tarda exhibited routes of cellular uptake and intracellular trafficking similar to that of live E. tarda. Together these results provide the first evidence that entry of live E. tarda into macrophages is probably a passive, virulence-independent process of phagocytosis effected by clathrin- and caveolin-mediated endocytosis and cytoskeletons, and that the intracellular traffic of E. tarda involves endosomes and endolysosomes.

VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction.

Eukaryotic cells use conserved multisubunit membrane tethering complexes, including CORVET and HOPS, to control the fusion of endomembranes. These complexes have been extensively studied in yeast, but to date there have been far fewer studies of metazoan CORVET and HOPS. Both of these complexes comprise six subunits: a common four-subunit core and two unique subunits. Once assembled, these complexes function to recognise specific endosomal membrane markers and facilitate SNARE-mediated membrane fusion. CORVET promotes the homotypic fusion of early endosomes, while HOPS promotes the fusion of lysosomes to late endosomes and autophagosomes. Many of the subunits of both CORVET and HOPS contain putative C-terminal zinc-finger domains. Here, the contribution of these domains to the assembly of the human CORVET and HOPS complexes has been examined. Using biochemical techniques, we demonstrate that the zinc-containing RING domains of human VPS18 and VPS41 interact directly to form a stable heterodimer. In cells, these RING domains are able to integrate into endogenous HOPS, showing that the VPS18 RING domain is required to recruit VPS41 to the core complex subunits. Importantly, this mechanism is not conserved throughout eukaryotes, as yeast Vps41 does not contain a C‑terminal zinc-finger motif. The subunit analogous to VPS41 in human CORVET is VPS8, in which the RING domain has an additional C-terminal segment that is predicted to be disordered. Both the RING and disordered C-terminal domains are required for integration of VPS8 into endogenous CORVET complexes, suggesting that HOPS and CORVET recruit VPS41 and VPS8 via distinct molecular interactions.

Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes.

KIF16B is a highly processive kinesin-3 family member that participates in the trafficking and tubulation of early endosomes along microtubules. KIF16B attaches to lipid cargos via a PX motif at its C-terminus, which has nanomolar affinity for bilayers containing phosphatidylinositol-3-phosphate (PI(3)P). As the PX domain has been proposed to be a primary mechanical anchor for the KIF16B-cargo attachment, we measured the adhesion forces and detachment kinetics of the PX domain as it interacts with membranes containing 2% PI(3)P and 98% phosphatidylcholine. Using optical tweezers, we found that the adhesion strength of a single PX domain ranged between 19 and 54 pN at loading rates between 80 and 1500 pN/s. These forces are substantially larger than the interaction of the adhesion of a pleckstrin homology domain with phosphatidylinositol 4,5-bisphosphate. This increased adhesion is the result of the membrane insertion of hydrophobic residues adjacent to the PI(3)P binding site, in addition to electrostatic interactions with PI(3)P. Attachment lifetimes under load decrease monotonically with force, indicating slip-bond behavior. However, the lifetime of membrane attachment under load appears to be well matched to the duration of processive motility of the KIF16B motor, indicating the PX domain is a suitable mechanical anchor for intracellular transport.

The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

Localized Phosphorylation of a Kinesin-1 Adaptor by a Capsid-Associated Kinase Regulates HIV-1 Motility and Uncoating.

Although microtubule motors mediate intracellular virus transport, the underlying interactions and control mechanisms remain poorly defined. This is particularly true for HIV-1 cores, which undergo complex, interconnected processes of cytosolic transport, reverse transcription, and uncoating of the capsid shell. Although kinesins have been implicated in regulating these events, curiously, there are no direct kinesin-core interactions. We recently showed that the capsid-associated kinesin-1 adaptor protein, fasciculation and elongation protein zeta-1 (FEZ1), regulates HIV-1 trafficking. Here, we show that FEZ1 and kinesin-1 heavy, but not light, chains regulate not only HIV-1 transport but also uncoating. This required FEZ1 phosphorylation, which controls its interaction with kinesin-1. HIV-1 did not stimulate widespread FEZ1 phosphorylation but, instead, bound microtubule (MT) affinity-regulating kinase 2 (MARK2) to stimulate FEZ1 phosphorylation on viral cores. Our findings reveal that HIV-1 binds a regulatory kinase to locally control kinesin-1 adaptor function on viral cores, thereby regulating both particle motility and uncoating.

Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR.

Tezacaftor (formerly VX-661) is an investigational small molecule that improves processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro, and improves CFTR function alone and in combination with ivacaftor.

Association of rs1801157 single nucleotide polymorphism of CXCL12 gene in breast cancer in Pakistan and in-silico expression analysis of CXCL12-CXCR4 associated biological regulatory network.

C-X-C chemokine ligand 12 (CXCL12) has important implications in breast cancer (BC) pathogenesis. It is selectively expressed on B and T lymphocytes and is involved in hematopoiesis, thymocyte trafficking, stem cell motility, neovascularization, and tumorigenesis. The single nucleotide polymorphism (SNP) rs1801157 of CXCL12 gene has been found to be associated with higher risk of BC.

The Toll for Trafficking: Toll-Like Receptor 7 Delivery to the Endosome.

Toll-like receptor (TLR)-7 is an endosomal innate immune sensor capable of detecting single-stranded ribonucleic acid. TLR7-mediated induction of type I interferon and other inflammatory cytokine production is important in antiviral immune responses. Furthermore, altered TLR7 expression levels are implicated in various autoimmune disorders, indicating a key role for this receptor in modulating inflammation. This review is focused on the regulation of TLR7 expression and localization compared to that of the other endosomal TLRs: TLR3, 8, and 9. Endosomal TLR localization is a tightly controlled and intricate process with some shared components among various TLRs. However, TLR-specific mechanisms must also be in place in order to regulate the induction of pathogen- and cell-specific responses. It is known that TLR7 is shuttled from the endoplasmic reticulum to the endosome via vesicles from the Golgi. Several chaperone proteins are required for this process, most notably uncoordinated 93 homolog B1 (Caenorhabditis elegans), recently identified to also be involved in the localization of the other endosomal TLRs. Acidification of the endosome and proteolytic cleavage of TLR7 are essential for TLR7 signaling in response to ligand binding. Cleavage of TLR7 has been demonstrated to be accomplished by furin peptidases in addition to cathepsins and asparagine endopeptidases. Moreover, triggering receptor expressed on myeloid cells like 4, a protein associated with antigen presentation and apoptosis in immune cells, has been implicated in the amplification of TLR7 signaling. Understanding these and other molecular mechanisms controlling TLR7 expression and trafficking will give insight into the specific control of TLR7 activity compared to the other endosomal TLRs.

Picornaviruses and Apoptosis: Subversion of Cell Death.

Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue.

Dendritic Homeostasis Disruption in a Novel Frontotemporal Dementia Mouse Model Expressing Cytoplasmic Fused in Sarcoma.

Cytoplasmic aggregation of fused in sarcoma (FUS) is detected in brain regions affected by amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which compose the disease spectrum, FUS proteinopathy. To understand the pathomechanism of ALS-FTD-associated FUS, we examined the behavior and cellular properties of an ALS mouse model overexpressing FUS with nuclear localization signal deletion. Mutant FUS transgenic mice showed hyperactivity, social interactional deficits, and impaired fear memory retrieval, all of which are compatible with FTD phenotypes. Histological analyses showed decreased dendritic spine and synaptic density in the frontal cortex before neuronal loss. Examination of cultured cells confirmed that mutant but not wild-type FUS was associated with decreased dendritic growth, mRNA levels, and protein synthesis in dendrites. These data suggest that cytoplasmic FUS aggregates impair dendritic mRNA trafficking and translation, in turn leading to dendritic homeostasis disruption and the development of FTD phenotypes.