A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

death - Top 30 Publications

Throw caution to the wind: is refeeding syndrome really a cause of death in acute care?

Refeeding syndrome (RFS), a life-threatening medical condition, is commonly associated with acute or chronic starvation. While the prevalence of patients at risk of RFS in hospital reportedly ranges from 0 to 80%, the prevalence and types of patients who die as a result of RFS is unknown. We aimed to measure the prevalence rate and examine the case histories of patients who passed away with RFS listed as a cause of death.

Maintaining dignity in death.

When I started my nursing degree last February, I set myself goals I wanted to achieve by the end of my first year. One of these was to care for a patient at the end of life and perform last offices.

pemetrexed + sildenafil, via autophagy-dependent HDAC down-regulation, enhances the immunotherapy response of NSCLC cells.

Pemetrexed is an approved therapeutic in NSCLC and ovarian cancer. Our studies focused on the ability of [pemetrexed + sildenafil] exposure to alter the immunogenicity of lung and ovarian cancer cells. Treatment of lung and ovarian cancer cells with [pemetrexed + sildenafil] in vitro rapidly reduced the expression of PD-L1, PD-L2 and ornithine decarboxylase (ODC), and increased the expression of Class I MHCA. In a cell-specific fashion, some cells also released the immunogenic nuclear protein HMGB1 into the extracellular environment. [Pemetrexed + sildenafil] reduced the expression of multiple histone deacetylases that was blocked by knock down of autophagy regulatory proteins. [Pemetrexed + sildenafil] lethality was enhanced by the histone deacetylase inhibitors AR42 and sodium valproate; AR42 and valproate as single agents also rapidly reduced the expression of PD-L1, PD-L2 and ODC, and increased expression of MHCA and CerS6. Nitric oxide and CerS6 signaling was required for drug-induced death receptor activation and tumor cell killing. In vivo, [pemetrexed + sildenafil] lethality against lung cancer cells was enhanced by sodium valproate. Using syngeneic mouse lung cancer cells [pemetrexed + sildenafil] enhanced the anti-tumor effects of antibodies directed to inhibit PD-1 or CTLA4. [Pemetrexed + sildenafil] interacted with the anti-PD-1 antibody to strongly enhance tumor infiltration by M1 macrophages; activated NK cells and activated T cells. Our data demonstrate that treatment of tumor cells with [pemetrexed + sildenafil] results in tumor cell killing and via autophagy-dependent down-regulation of HDACs, it opsonizes the remaining tumor cells to anti-tumor immunotherapy antibodies.

Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches.

Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.

Simple screening tools predict death and cardiovascular events in patients with rheumatic disease.

Patients with rheumatic disease (RD) have an increased mortality risk compared with the general population, mainly due to cardiovascular disease (CVD). We aimed to identify patients at high risk of CVD and mortality by comparing three screening tools suitable for clinical practice.

Increased acetaminophen related calls to Finnish PIC better reflect acetaminophen sales than serious poisonings.

Acetaminophen (APAP) or paracetamol is a commonly encountered medicine in poisonings. We studied the changes in APAP related calls to the Finnish poison information centre (FPIC), and serious intoxications, involving hepatotoxicity or death in 2001-2014. These data were compared with paracetamol sales in Finland.

Dietary polyphenols for atherosclerosis: A comprehensive review and future perspectives.

Atherosclerosis is one of the most prevalent reasons for premature death in adults. Despite the several conventional drugs in the market; many patients are not completely treated. Here we comprehensively review current clinical evidence regarding the efficacy of dietary polyphenols in atherosclerosis and related complications. PubMed, Cochrane library and Scopus were searched from inception until August 2016 to obtain clinical trials in which polyphenols were evaluated in cardiovascular parameters related to atherosclerosis. From total of 13031 results, 49 clinical trials were finally included. Tyrosol derivatives from virgin olive oil, catechins and theaflavins from green and black tea, cocoa polyphenols, and red grape resveratrol, as well as anthocyanins were the most studied polyphenolic compounds which could regulate lipid profile, inflammation and oxidative stress, blood pressure, endothelial function, and cell adhesion molecules. The most important limitations of the included trials were small sample size, short follow up, and unqualified methodology. Future well-designed clinical trials are necessary to provide better level of evidence for clinical decision making.

Prognostic significance of Daxx NCR (Nuclear/Cytoplasmic Ratio) in gastric cancer.

In addition to regulating apoptosis via its interaction with the death domain of Fas receptor, death domain associated protein 6 (Daxx) is also known to be involved in transcriptional regulation, suggesting that the function of Daxx depends on its subcellular localization. In this study, we aimed to explore Daxx subcellular localization in gastric cancer (GC) cells and correlate the findings with clinical data in GC patients. Seventy pairs of tissue samples (GC and adjacent normal tissue) were analyzed immunohistochemically for Daxx expression and localization (nuclear and cytoplasmic). The Daxx Nuclear/Cytoplasmic ratio (Daxx NCR) values in tissue microarray data with 522 tumor samples were further analyzed. The defined Prior cohort (n = 277, treatment between 2006 and 2009) and Recent cohort (n = 245, treatment between 2010 and 2011) were then used to examine the relationship between Daxx NCR and clinical data. The Daxx NCR was found to be clinically informative and significantly higher in GC tissue. Using Daxx NCR (risk ratio = 2.0), both the Prior and Recent cohorts were divided into high- and low-risk groups. Relative to the low-risk group, the high-risk patients had a shorter disease free survival (DFS) and overall survival (OS) in both cohorts. Importantly, postoperative chemotherapy was found having differential effect on high- and low-risk patients. Such chemotherapy brought no survival benefit, (and could potentially be detrimental,) to high-risk patients after surgery. Daxx NCR could be used as a prognosis factor in GC patients, and may help select the appropriate population to benefit from chemotherapy after surgery.

Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-κB Pathways.

Glutamate is the major excitatory neurotransmitter in the brain, but excessive synaptic glutamate must be removed to prevent excitotoxic injury and death. Two astrocytic glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2, play a major role in eliminating excess glutamate from the synapse. Dysregulation of EAAT1 contributes to the pathogenesis of multiple neurological disorders, such as Alzheimer's disease (AD), ataxia, traumatic brain injuries, and glaucoma. In the present study, we investigated the effect of arundic acid on EAAT1 to determine its efficacy in enhancing the expression and function of EAAT1, and its possible mechanisms of action. The studies were carried out in human astrocyte H4 cells as well as in human primary astrocytes. Our findings show that arundic acid upregulated EAAT1 expression at the transcriptional level by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Arundic acid increased astrocytic EAAT1 promoter activity, messenger RNA (mRNA)/protein levels, and glutamate uptake, while pharmacological inhibition of NF-κB or mutation on NF-κB binding sites in the EAAT1 promoter region abrogated these effects. Arundic acid increased NF-κB reporter activity and induced NF-κB nuclear translocation as well as its bindings to the EAAT1 promoter. Furthermore, arundic acid activated the Akt and ERK signaling pathways to enhance EAAT1 mRNA/protein levels. Finally, arundic acid attenuated manganese-induced decrease in EAAT1 expression by inhibiting expression of the transcription factor Ying Yang 1 (YY1). These results demonstrate that arundic acid increases the expression and function of EAAT1 via the Akt, ERK, and NF-κB signaling pathways, and reverses Mn-induced EAAT1 repression by inhibiting the Mn-induced YY1 activation.

Systolic Dysfunction in Infarcted Mice Does Not Necessarily Lead to Heart Failure: Need to Refine Preclinical Models.

Heart failure (HF) is a major cause of death and hospitalization worldwide. Despite advances in reducing mortality, prognosis remains poor and prevalence has reached epidemic proportions. The limitations of available preclinical models represent a major hurdle in the development of new therapies. Myocardial infarction (MI) is a main cause of HF in humans, and mouse models of MI are often used to study HF mechanisms and experimental treatments. We investigated whether MI in mice constitutes an appropriate model of HF. Permanent ligation of the left coronary artery induced severe and persistent systolic dysfunction and ventricular dilatation. Mouse follow-up for 10 months showed no significant evidence of lung congestion or other pulmonary defects associated with HF. No difference was observed in the capacity of infarcted mice to exercise compared to control animals. These results indicate that severe cardiac dysfunction in mice is not sufficient to demonstrate the presence of HF.

Laparoscopic colectomy reduces complications and hospital length of stay in colon cancer patients with liver disease and ascites.

Ascites increases perioperative complications and risk of death, but is not an absolute contraindication for colectomy in patients with colon cancer. It remains unclear whether postoperative risks can be minimized using a laparoscopic versus open approach.

Myoglobinemia markers with potential applications in forensic sample analysis: lipid markers in myoglobinemia for postmortem blood.

The crush syndrome, in which rhabdomyolysis and trauma occur as a result of heat stroke and drug intoxication, can lead to myoglobinemia. This condition can be diagnosed by measuring myoglobin (Mb) levels in blood and urine. However, postmortem Mb levels are unreliable indicators, since blood Mb concentration drastically increases within a very short time after death and urine cannot always be obtained at dissection; this makes it difficult to diagnose myoglobinemia in a corpse. To address this issue, in this study, we used a lipidomics approach to identify markers that can be used to detect myoglobinemia in postmortem blood samples. We found that increases in levels of fatty acid oxides such as stearic, oleic, linoleic, and arachidonic acid and decreases in levels of plasmalogens and phosphatidylethanolamine in the blood were associated with high Mb level. These results demonstrate that postmortem samples are amenable to lipidomics analysis and provide a set of markers other than Mb that can be used for postmortem diagnosis of myoglobinemia.

Behavioral Comorbidities and Drug Treatments in a Zebrafish scn1lab Model of Dravet Syndrome.

Loss-of-function mutations in SCN1A cause Dravet syndrome (DS), a catastrophic childhood epilepsy in which patients experience comorbid behavioral conditions, including movement disorders, sleep abnormalities, anxiety, and intellectual disability. To study the functional consequences of voltage-gated sodium channel mutations, we use zebrafish with a loss-of-function mutation in scn1lab, a zebrafish homolog of human SCN1A. Homozygous scn1lab(s552/s552) mutants exhibit early-life seizures, metabolic deficits, and early death. Here, we developed in vivo assays using scn1lab(s552) mutants between 3 and 6 d postfertilization (dpf). To evaluate sleep disturbances, we monitored larvae for 24 h with locomotion tracking software. Locomotor activity during dark (night phase) was significantly higher in mutants than in controls. Among anticonvulsant drugs, clemizole and diazepam, but not trazodone or valproic acid, decreased distance moved at night for scn1lab(s552) mutant larvae. To monitor exploratory behavior in an open field, we tracked larvae in a novel arena. Mutant larvae exhibited impaired exploratory behavior, with increased time spent near the edge of the arena and decreased mobility, suggesting greater anxiety. Both clemizole and diazepam, but not trazodone or valproic acid, decreased distance moved and increased time spent in the center of the arena. Counting inhibitory neurons in vivo revealed no differences between scn1lab(s552) mutants and siblings. Taken together, our results demonstrate conserved features of sleep, anxiety, and movement disorders in scn1lab mutant zebrafish, and provide evidence that a zebrafish model allows effective tests of treatments for behavioral comorbidities associated with DS.

Importance of adiponectin activity in the pathogenesis of Alzheimer's disease.

A recent study suggested that insulin resistance may play a central role in the pathogenesis of Alzheimer's disease (AD). In this regard, it is of note that upregulation of plasma adiponectin (APN), a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation, has recently been associated with the severities of amyloid deposits and cognitive deficits in the elderly, suggesting that APN may enhance the risk of AD. These results are unanticipated because AD has been linked to type II diabetes and other metabolic disorders in which hypoadiponectinemia has been firmly established, and because APN ameliorated neuropathological features in a mouse model of neurodegeneration. Therefore, the objective of this study is to discuss the possible mechanisms underlying the biological actions of APN in the context of AD. Given that insulin receptor signaling is required for normal function of the nervous system, we predict that APN may be upregulated to compensate for compromised activity of the insulin receptor signaling pathway. However, increased APN might be sequestered by tau in the brain, leading to neurotoxic protein aggregation in AD. Alternatively, misfolding of APN may result in downregulation of the insulin/APN signal transduction network, leading to decreased neuroprotective and neurotrophic activities. Thus, it is possible that both 'gain of function' and 'loss of function' of APN may underlie synaptic dysfunction and neuronal cell death in AD. Such a unique biological mechanism underlying APN function in AD may require a novel therapeutic strategy that is distinct from previous treatment for metabolic disorders.

Diagnostic imaging features of necrotizing enterocolitis: a narrative review.

Necrotizing enterocolitis (NEC) is an inflammatory process, characterized by intestinal necrosis of variable extension, leading to perforation, generalized peritonitis and death. The classical pathogenetic theory focuses on mucosal damage related to a stress induced intestinal ischemia leading to mucosal injury and bacterial colonization of the wall. A more recent hypothesis emphasizes the role of immaturity of gastrointestinal and immune system, particularly of the premature, responsible of bowel wall vulnerability and suffering. NEC is the most common gastrointestinal emergency in the newborn, with a higher incidence in the preterm; improvement of neonatal resuscitation techniques enables the survival of premature of very low birth weight (VLBW) with prolongation of hospital stay for perinatal and neonatal care and a higher risk of NEC. Clinical presentation of NEC in newborn ranges from mild forms with moderate gastrointestinal tract disorder and that can heal spontaneously, to very serious forms with fulminant course characterized by perforation, peritonitis, sepsis, disseminated intravascular coagulation (DIC) and shock. Imaging modality in the diagnosis of NEC is historically represented by the plain-film abdominal radiographs which can be performed every 6 hours because of the rapid evolution that may occur in the patient's clinical condition. However ultrasound (US), in recent years, is playing an increasingly important role in the evaluation of early stages of the disease as it provides images in real time of the abdominal structures being able to assess the presence and validity of peristalsis of the bowel loops, detect the thickness of the intestinal wall and the presence of minimal amounts of fluid in the peritoneal cavity. In this paper we review the pathogenesis, clinical presentation and imaging of NEC with a particular attention to the emergent role of US in the diagnosis of the disease.

Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments.

Interaction between cancerous, non-transformed cells, and non-cellular components within the tumor microenvironment plays a key role in response to treatment. However, short-term culture or xenotransplantation of cancer specimens in immunodeficient animals results in dramatic modifications of the tumor microenvironment, thus preventing reliable assessment of compounds or biologicals of potential therapeutic relevance. We used a perfusion-based bioreactor developed for tissue engineering purposes to successfully maintain the tumor microenvironment of freshly excised breast cancer tissue obtained from 27 breast cancer patients and used this platform to test the therapeutic effect of antiestrogens as well as checkpoint-inhibitors on the cancer cells. Viability and functions of tumor and immune cells could be maintained for over 2 weeks in perfused bioreactors. Next generation sequencing authenticated cultured tissue specimens as closely matching the original clinical samples. Anti-estrogen treatment of cultured estrogen receptor positive breast cancer tissue as well as administration of pertuzumab to a Her2 positive breast cancer both had an anti-proliferative effect. Treatment with anti-programmed-death-Ligand (PD-L)-1 and anti-cytotoxic T lymphocyte-associated protein (CTLA)-4 antibodies lead to immune activation, evidenced by increased lymphocyte proliferation, increased expression of IFNγ, and decreased expression of IL10, accompanied by a massive cancer cell death in ex vivo triple negative breast cancer specimens. In the era of personalized medicine, the ex vivo culture of breast cancer tissue represents a promising approach for the pre-clinical evaluation of conventional and immune-mediated treatments and provides a platform for testing of innovative treatments.

NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors.

A prospective analysis of natural killer (NK) cell phenotype and function was performed on fresh peripheral blood samples from untreated patients with B-cell chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). Compared to healthy controls, CD56(dim) NK cells in CLL patients displayed reduced expression of the NKG2D activating receptor and increased CD27 expression, which indicates declines in mature cells. In addition, NK cells from CLL patients showed reduced degranulation responses toward transformed B cells alone or with rituximab and were more sensitive to activation-induced cell death. We further noted a striking reduction in the frequency and viability of NK cells expressing the inhibitory killer cell Ig-like receptors (KIR)2DL1 and/or KIR3DL1, which progressed over time in most patients. Comparisons between a CLL patient and healthy monozygotic twin were consistent with our results in the larger cohorts. Functional and biomarker alterations were less pronounced on NK cells from SLL patients, which have lower tumor burden in peripheral blood than CLL, but significant reduction in degranulation under ADCC conditions and lower frequency and viability of KIR-expressing NK cells were still evident in SLL. We conclude that mature KIR-expressing NK cells respond to the high circulating B cell tumor burden in CLL, but undergo activation-induced apoptosis. Consequently, CLL patients may benefit from therapies that augment NK cell survival and function.

Uncovering the immunotherapeutic cycle initiated by p19Arf and interferon-β gene transfer to cancer cells: An inducer of immunogenic cell death.

Simultaneous reestablishment of p53/p19(Arf) and interferon-β pathways in melanoma cells culminates in a cell death process that displays features of necroptosis along with the release of immunogenic cell death molecules and unleashes an antitumor immune response mediated by natural killer cells, neutrophils as well as CD4(+) and CD8(+) T lymphocytes.

Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma.

Radiation therapy (RT) can induce upregulation of programmed death ligand 1 (PD-L1) on tumor cells or myeloid cells, which may affect response to PD-1-based immunotherapy. PD-L1 upregulation during RT is a dynamic process that has been difficult to monitor during treatment. The aim of this study was to evaluate the RT-induced PD-L1 upregulation in the tumor and its microenvironment using immunoPET/CT imaging of two syngeneic murine tumor models (HPV+ head and neck squamous cell carcinoma (HNSCC) or B16F10 melanoma). Tumors were established in two locations per mouse (neck and flank), and fractionated RT (2 Gy × 4 or 2 Gy × 10) was delivered only to the neck tumor, alone or during anti-PD-1 mAb immunotherapy. PD-L1 expression was measured by PET/CT imaging using Zr-89 labeled anti-mouse PD-L1 mAb, and results were validated by flow cytometry. PET/CT imaging demonstrated significantly increased tracer uptake in irradiated neck tumors compared with non-irradiated flank tumors. Ex vivo analysis by biodistribution and flow cytometry validated PD-L1 upregulation specifically in irradiated tumors. In the HNSCC model, RT-induced PD-L1 upregulation was only observed after 2 Gy × 10 fractionated RT, while in the B16F10 model upregulation of PD-L1 occurred after 2 Gy × 4 fractionated RT. Fractionated RT, but not anti-PD-1 therapy, upregulated PD-L1 expression on tumor and infiltrating inflammatory cells in murine models, which could be non-invasively monitored by immunoPET/CT imaging using Zr-89 labeled anti-mouse PD-L1 mAb, and differentially identified anti-PD-1 responsive as well as selectively irradiated tumors in vivo.

Trial watch: Dendritic cell-based anticancer immunotherapy.

Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.

PD-L2 expression in colorectal cancer: Independent prognostic effect and targetability by deglycosylation.

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide, and immune checkpoint blockade therapy provides an opportunity for improving the outcome of CRC patients. Recent studies suggest that programmed death ligand-1 (PD-L1) is only expressed in 12% of CRCs. Here, we demonstrate that PD-L2 is expressed in approximately 40% CRCs, and its expression independently associates with poor survival of CRC patients. By detection of PD-L2 expression by immunofluorescence in 124 CRC cases with 10-y survival data, we found significant association between PD-L2 overexpression in cancer cells and worse overall survival (46.3 vs 69.1 mo; p = 0.0004). The association remained significant in multivariate COX regression analysis (hazard ratio = 2.778, 95% confidence interval [CI] = 1.668-4.627; p < 0.0001). In the validation CRC data set, significant association between PD-L2 overexpression and poor survival was supported by the univariate analysis (27.1 vs. 88.9 mo; p = 0.0002) and multivariate model (hazard ratio = 7.09, 95%CI 1.78-28.16; p = 0.005). Western Blot revealed strong induction of PD-L2 expression by interferon-γ (IFNγ) in CRC cells, and the mRNA levels of both genes were significantly correlated in CRC tissue samples. Suppression of glycosylation with tunicamycin caused a shift in molecular weight and significant decrease in the expression of PD-L2 protein. In conclusion, PD-L2 overexpression in CRC cells, under the regulation by IFNγ and glycosylation, associates with poor survival of patients with colorectal cancer. These findings highlight PD-L2 as a promising therapeutic target in CRC and suggest potential routes to control PD-L2 expression in CRC cells.

Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients.

The introduction of immune checkpoint blockade into the clinical practice resulted in improvement of survival of a significant portion of melanoma patients. Consequently, predictive biomarkers of response are needed to optimize patient's stratification and the development of combination therapies. The aim of this study was to determine whether levels of soluble NKG2D ligands (MICA, MICB, ULBP1, 2 and 3; sNKG2DLs) in the serum of melanoma patients can serve as useful predictors of response to the treatment with immune checkpoint blockade. sNKG2DLs were measured by ELISA in baseline and post-treatment serum and these results were correlated with the clinical outcome of melanoma patients (N = 194). The same determinations were performed also in a cohort of patients (N = 65) treated with either chemotherapy, radiotherapy, or mutated BRAF inhibitors (BRAFi). Absence of soluble MICB and ULBP-1 in baseline serum correlated with improved survival (OS = 21.6 and 25.3 mo and p = 0.02 and 0.01, respectively) of patients treated with immunological therapies while detectable levels of these molecules were found in poor survivors (OS = 8.8 and 12.1 mo, respectively). Multivariate analysis showed that LDH (p <0.0001), sULBP-1 (p = 0.02), and sULBP-2 (p = 0.02) were independent predictors of clinical outcome for the cohort of melanoma patients treated with immune checkpoint blockade. Only LDH but not sNKG2DLs was significantly associated with the clinical outcome of patients treated with standard or BRAFi regimens. These findings highlight the relevance of sNKG2DLs in the serum of melanoma patients as biomarkers for patients' stratification and optimization of immune checkpoint inhibition regimens.

Seizure Associated Takotsubo Syndrome: A Rare Combination.

Takotsubo cardiomyopathy (TC) is increasingly recognized in neurocritical care population especially in postmenopausal females. We are presenting a 61-year-old African American female with past medical history of epilepsy, bipolar disorder, and hypertension who presented with multiple episodes of seizures due to noncompliance with antiepileptic medications. She was on telemetry which showed ST alarm. Electrocardiogram (ECG) was ordered and showed ST elevation in anterolateral leads and troponins were positive. Subsequently Takotsubo cardiomyopathy was diagnosed by left ventriculography findings and absence of angiographic evidence of obstructive coronary artery disease. Echocardiogram showed apical hypokinesia, ejection fraction of 40%, and systolic anterior motion of mitral valve with hyperdynamic left ventricle, in the absence of intracoronary thrombus formation in the angiogram. Electroencephalography showed evidence of generalized tonic-clonic seizure. She was treated with supportive therapy. This case illustrates importance of ECG in all patients with seizure irrespective of cardiac symptoms as TC could be the cause of Sudden Unexpected Death in Epilepsy (SUDEP) and may be underdiagnosed and so undertreated.

Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment.

Matrix metalloproteinase (MMP) is defined as an endopeptidase in the extracellular matrix (ECM), which plays essential roles in physiological processes such as organogenesis, wound healing, angiogenesis, apoptosis and motility. MMPs are produced and assembled in the cytoplasm as proenzymes with a cytoplasmic domain and require extracellular activation. MMPs can degrade receptors, extracellular matrix proteins, PARPs and release apoptotic substances. MMPs have been found in the cytosol, organelles and extracellular compartments and recently many types of MMPs have been found in the nucleus. However, the mechanisms and roles of MMPs inside the cell nucleus are still poorly understood. Here we summarized the nuclear localization mechanisms of MMPs and their functions in the nucleus such as apoptosis, tissue remodeling upon injury and cancer progression. Most importantly, we found that nuclear MMPs have evolved to translocate to membrane and target ECM possibly through evolution of nuclear localization signal (NLS), natural selection and anti-apoptotic survival. Thus, the knowledge about the evolution and regulation of nuclear MMPs appears to be essential in understanding a variety of cellular processes along with the development of MMP-targeted therapeutic drugs against the progression of certain diseases.

Premature deaths among individuals with severe mental illness after discharge from long-term hospitalisation in Japan: a naturalistic observation during a 24-year period.

Premature death in individuals with severe mental illness (SMI) in countries without nationally collected data, including Japan, is structurally underreported.

Modulation of Glutathione Hemostasis by Inhibition of 12/15-Lipoxygenase Prevents ROS-Mediated Cell Death after Hepatic Ischemia and Reperfusion.

Reactive oxygen species- (ROS-) mediated ischemia-reperfusion injury (IRI) detrimentally impacts liver transplantation and resection. 12/15-Lipoxygenase (12/15-LOX), an antagonistic protein of the glutathione peroxidase 4 (GPX4) signaling cascade, was proven to mediate cell death in postischemic cerebral and myocardial tissue. The aim of this study was to investigate the impact of 12/15-LOX inhibition on hepatic IRI.

Metabolomics Analysis for Defining Serum Biochemical Markers in Colorectal Cancer Patients with Qi Deficiency Syndrome or Yin Deficiency Syndrome.

Colorectal cancer is one of the leading causes of tumor-associated death, and traditional Chinese medicine (TCM) classifies colorectal cancer into various subtypes mainly according to the symptomatic pattern identification (ZHENG). Here, we investigated the difference in metabolic profiles of serum by comparing colorectal cancer subjects with Nondeficiency (ND), Qi deficiency (QD), and Yin deficiency (YD). The ratio of subjects with carcinoembryonic antigen (CEA) was higher in YD pattern, and the ratio of subjects with carbohydrate antigen 19-9 (CA19-9) was higher both in YD and in QD, compared with ND. As a result of metabolomics analysis, twenty-five metabolites displayed differences between QD and ND, while twenty-eight metabolites displayed differences between YD and ND. The downregulated metabolites in QD/ND and YD/ND mainly include carbohydrates and the upregulated metabolites mainly include amino acids and fatty acids, suggesting conversion obstruction of carbohydrates, fatty acids, and amino acids occurs in patients with QD and YD compared with ND. Our results demonstrate that colorectal cancer patients with QD or YD were associated with metabolic disorders and the variations of serum metabolic profiles may serve as potential biochemical markers for diagnosis and prognosis of colorectal cancer patients displayed QD or YD patterns.

Metformin attenuate PTZ-induced apoptotic neurodegeneration in human cortical neuronal cells.

Seizures are one of the neurodegenerative disorders of human being. Metformin has antioxidant properties and commonly used as an oral antidiabetic drug. The current study was aimed to observe the neuroprotective effect of metformin against PTZ-induced apoptotic neurodegeneration in human cortical neuronal cell culture.

Osteopontin Impacts West Nile virus Pathogenesis and Resistance by Regulating Inflammasome Components and Cell Death in the Central Nervous System at Early Time Points.

Osteopontin (OPN) is a molecule that is common in central nervous system (CNS) pathologies, which participates in the activation, migration, and survival of inflammatory cells. However, the mechanisms by which OPN modulates inflammatory pathways are not clear. To understand the role of OPN in CNS viral infections, we used a lethal mouse model of West Nile virus (WNV), characterized by the injection of high doses of the Eg101 strain of WNV, causing the increase of OPN levels in the brain since early time points. To measure the impact of OPN in neuropathogenesis and resistance, we compared C57BI/6 WT with mice lacking the OPN gene (OPN KO). OPN KO presented a significantly higher mortality compared to WT mice, detectable since day 5 pi. Our data suggests that OPN expression at early time points may provide protection against viral spread in the CNS by negatively controlling the type I IFN-sensitive, caspase 1-dependent inflammasome, while promoting an alternative caspase 8-associated pathway, to control the apoptosis of infected cells during WNV infection in the CNS. Overall, we conclude that the expression of OPN maintains a critical threshold in the innate immune response that controls apoptosis and lethal viral spread in early CNS infection.

Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets.

Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8-16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.