A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

flavivirus - Top 30 Publications

Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR(-/-)) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR(-/-)) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR(-/-) λR(-/-) mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the role of type III interferon (IFN)-mediated signaling, a host immune defense mechanism, in controlling YFV-17D infection and attenuation in different mouse models. We uncovered a critical role of type III IFN-mediated signaling in preserving the integrity of the blood-brain barrier and preventing viral brain invasion. Type III IFN also played a major role in regulating the induction of a potent but balanced immune response that prevented viral evasion of the host immune system. An improved understanding of the complex mechanisms regulating YFV-17D attenuation will provide insights into the key virus-host interactions that regulate host immune responses and infection outcomes as well as open novel avenues for the development of innovative vaccine strategies.

Neurologic Complications Associated With the Zika Virus in Brazilian Adults.

There are no prospective cohort studies assessing the incidence and spectrum of neurologic manifestations secondary to Zika virus (ZIKV) infection in adults.

Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases.

It has previously been suggested that southern Tunisian oases may be suitable areas for the circulation of flaviviruses. In order to anticipate and prevent possible epidemiological spread of flaviviruses in humans and domestic animals, the ecology of their transmission in the oasis system needs to be better understood. Thus, the aim of this study was to assess the seroprevalence of anti-flavivirus antibodies in the laughing dove (Spilopelia senegalensis), an abundant resident bird in Tunisian oases. Anti-flavivirus antibodies were detected in 17% of sampled doves. Ten per cent of the total tested doves were West Nile virus (WNV) seropositive and 4% were Usutu virus (USUV) seropositive, which provides the first evidence of USUV circulation in Tunisian birds. We also found that the occurrence probability of anti-flavivirus antibodies in dove plasma increased with decreasing distance to coast, suggesting that doves inhabiting coastal oases were more exposed to flaviviruses compared with those inhabiting inland oases. We also found significantly higher antibody occurrence probability in adult doves compared with young doves, which underlines the effect of exposure time. Overall, our results suggest that the laughing dove may be used for WNV and USUV surveillance in southern Tunisia. They also stress the need for investigations combining data on birds and mosquitoes to better understand the ecological factors governing the circulation of flaviviruses in this area.

Modeling the transmission and control of Zika in Brazil.

Zika virus, a reemerging mosquito-borne flavivirus, started spread across Central and Southern America and more recently to North America. The most serious impacted country is Brazil. Based on the transmission mechanism of the virus and assessment of the limited data on the reported suspected cases, we establish a dynamical model which allows us to estimate the basic reproduction number R 0 = 2.5020. The wild spreading of the virus make it a great challenge to public health to control and prevention of the virus. We formulate two control models to study the impact of releasing transgenosis mosquitoes (introducing bacterium Wolbachia into Aedes aegypti) on the transmission of Zika virus in Brazil. Our models and analysis suggest that simultaneously releasing Wolbachia-harboring female and male mosquitoes will achieve the target of population replacement, while releasing only Wolbachia-harboring male mosquitoes will suppress or even eradicate wild mosquitoes eventually. We conclude that only releasing male Wolbachia mosquitoes is a better strategy for control the spreading of Zika virus in Brazil.

Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals.

Infection of mosquitoes is an essential step for the transmission of mosquito-borne arboviruses in nature. Engorgement of infectious blood meals from viremic infected vertebrate hosts allows the entry of viruses and initiates infection of midgut epithelial cells. Historically, the infection process of arboviruses in mosquitoes has been studied through the engorgement of mosquitoes from viremic laboratory animals or from artificial feeders containing blood mixed with viruses harvested from cell cultures. The latter approach using so-called artificial blood meals is more frequently used since it is readily optimized to maximize viral titer, negates the use of animals and can be used with viruses for which there are no small animal models. Use of artificial blood meals has enabled numerous studies on mosquito infections with a wide variety of viruses; however, as described here, with suitable modification it can also be used to study the interplay between infection, specific blood components, and physiological consequences associated with blood engorgement. For hematophagous female mosquitoes, blood is the primary nutritional source supporting all physiological process including egg development, and also influences neurological processes and behaviors such as host-seeking. Interactions between these blood-driven vector biological processes and arbovirus infection that is mediated via blood engorgement have not yet been specifically studied. This is in part because presentation of virus in whole blood inevitably induces enzymatic digestion processes, hormone driven oogenesis, and other biological changes. In this study, the infection process of Zika virus (ZIKV) in Aedes aegypti was characterized by oral exposure via viral suspension meals within minimally bovine serum albumin complemented medium or within whole blood. The use of bovine serum albumin in infectious meals provides an opportunity to evaluate the role of serum albumin during the process of flavivirus infection in mosquitoes.

Notes from the Field: Zika Virus-Associated Neonatal Birth Defects Surveillance - Texas, January 2016-July 2017.

On November 28, 2016, the Texas Department of State Health Services (Texas DSHS) reported its first confirmed case of local mosquitoborne Zika virus transmission in the city of Brownsville, located in south Texas along the U.S.-Mexico border. Zika virus infection during pregnancy has been linked to adverse congenital outcomes including microcephaly, neural tube defects, early brain malformations, structural eye abnormalities, congenital deafness, and limb contractures (1). On January 1, 2016, Texas DSHS established enhanced surveillance to identify women with laboratory evidence of possible Zika virus infection during pregnancy and suspected cases of Zika virus-associated birth defects among completed pregnancies.

Whole-genome sequence analysis of Zika virus, amplified from urine of traveler from the Philippines.

Zika virus (ZIKV) (genus Flavivirus, family Flaviviridae) is an emerging pathogen associated with microcephaly and Guillain-Barré syndrome. The rapid spread of ZIKV disease in over 60 countries and the large numbers of travel-associated cases have caused worldwide concern. Thus, intensified surveillance of cases among immigrants and tourists from ZIKV-endemic areas is important for disease control and prevention. In this study, using Next Generation Sequencing, we reported the first whole-genome sequence of ZIKV strain AFMC-U, amplified from the urine of a traveler returning to Korea from the Philippines. Phylogenetic analysis showed geographic-specific clustering. Our results underscore the importance of examining urine in the diagnosis of ZIKV infection.

A neutralization assay for Zika and Dengue viruses using a real-time PCR-based endpoint assessment.

The global spread and infective complications of Zika virus (ZKV) and Dengue virus (DENV) have made them flaviviruses of public health concern. Serological diagnosis can be challenging due to antibody cross-reactivity, particularly in secondary flavivirus infections or when there is a history of flavivirus vaccination. The virus neutralization assay is considered to be the most specific assay for measurement of anti-flavivirus antibodies. This study describes an assay where neutralization endpoint is measured by real-time PCR, providing results within 72 hours. It demonstrated 100% sensitivity (24/24 ZKV and 15/15 DENV) and 100% specificity (11/11 specimens) when testing well-characterised sera. In addition, the assay was able to determine the correct DENV serotype in 91.7% of cases. The high sensitivity and specificity of the real-time PCR neutralization assay makes it suitable to use as a confirmatory test for sera that are reactive in commercial IgM/IgG enzyme immunoassays. Results are objective and the PCR-based measurement of neutralisation endpoint lends itself to automation so that throughput may be increased in times of high demand.

Zika virus replication in the mosquito Culex quinquefasciatus in Brazil.

Zika virus (ZIKV) is a flavivirus that has recently been associated with an increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide; however, there is evidence that other mosquito species, including Culex quinquefasciatus, transmit the virus. To test the potential of Cx. quinquefasciatus to transmit ZIKV, we experimentally compared the vector competence of laboratory-reared Ae. aegypti and Cx. quinquefasciatus. Interestingly, we were able to detect the presence of ZIKV in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus. In addition, we collected ZIKV-infected Cx. quinquefasciatus from urban areas with high microcephaly incidence in Recife, Brazil. Corroborating our experimental data from artificially fed mosquitoes, ZIKV was isolated from field-caught Cx. quinquefasciatus, and its genome was partially sequenced. Collectively, these findings indicate that there may be a wider range of ZIKV vectors than anticipated.

Zika Virus Protease: An Antiviral Drug Target.

The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery.

Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection.

Tick-borne encephalitis virus (TBEV) is a member of the genus Flavivirus. It can cause serious infections in humans that may result in encephalitis/meningoencephalitis. Although several studies have described the involvement of specific genes in the host response to TBEV infection in the central nervous system (CNS), the overall network remains poorly characterized. Therefore, we investigated the response of DAOY cells (human medulloblastoma cells derived from cerebellar neurons) to TBEV (Neudoerfl strain, Western subtype) infection to characterize differentially expressed genes by transcriptome analysis. Our results revealed a wide panel of interferon-stimulated genes (ISGs) and pro-inflammatory cytokines, including type III but not type I (or II) interferons (IFNs), which are activated upon TBEV infection, as well as a number of non-coding RNAs, including long non-coding RNAs. To obtain a broader view of the pathways responsible for eliciting an antiviral state in DAOY cells we examined the effect of type I and III IFNs and found that only type I IFN pre-treatment inhibited TBEV production. The cellular response to TBEV showed only partial overlap with gene expression changes induced by IFN-β treatment - suggesting a virus-specific signature - and we identified a group of ISGs that were highly up-regulated following IFN-β treatment. Moreover, a high rate of down-regulation was observed for a wide panel of pro-inflammatory cytokines upon IFN-β treatment. These data can serve as the basis for further studies of host-TBEV interactions and the identification of ISGs and/or lncRNAs with potent antiviral effects in cases of TBEV infection in human neuronal cells.

Phylodynamics of Yellow Fever Virus in the Americas: new insights into the origin of the 2017 Brazilian outbreak.

Yellow fever virus (YFV) strains circulating in the Americas belong to two distinct genotypes (I and II) that have diversified into several concurrent enzootic lineages. Since 1999, YFV genotype I has spread outside endemic regions and its recent (2017) reemergence in non-endemic Southeastern Brazilian states fuels one of the largest epizootic of jungle Yellow Fever registered in the country. To better understand this phenomenon, we reconstructed the phylodynamics of YFV American genotypes using sequences from nine countries sampled along 60 years, including strains from Brazilian 2017 outbreak. Our analyses reveals that YFV genotypes I and II follow roughly similar evolutionary and demographic dynamics until the early 1990s, when a dramatic change in the diversification process of the genotype I occurred associated with the emergence and dissemination of a new lineage (here called modern). Trinidad and Tobago was the most likely source of the YFV modern-lineage that spread to Brazil and Venezuela around the late 1980s, where it replaced all lineages previously circulating. The modern-lineage caused all major YFV outbreaks detected in non-endemic South American regions since 2000, including the 2017 Brazilian outbreak, and its dissemination was coupled to the accumulation of several amino acid substitutions particularly within non-structural viral proteins.

The latest advancements in Zika virus vaccine development.

Microcephaly Prevalence in Infants Born to Zika Virus-Infected Women: A Systematic Review and Meta-Analysis.

Zika virus is an emergent flavivirus transmitted by Aedes genus mosquitoes that recently reached the Americas and was soon implicated in an increase of microcephaly incidence. The objective of the present study is to systematically review the published data and perform a meta-analysis to estimate the prevalence of microcephaly in babies born to Zika virus-infected women during pregnancy. We searched PubMed and Cochrane databases, included cohort studies, and excluded case reports and case series publications. We extracted sample sizes and the number of microcephaly cases from eight studies, which permitted a calculation of prevalence rates that are pooled in a random-effects model meta-analysis. We estimated the prevalence of microcephaly of 2.3% (95% CI = 1.0-5.3%) among all pregnancies. Limitations include mixed samples of women infected at different pregnancy times, since it is known that infection at the first trimester is associated with higher risk to congenital anomalies. The estimates are deceptively low, given the devastating impact the infection causes over children and their families. We hope our study contributes to public health knowledge to fight Zika virus epidemics to protect mothers and their newborns.

Significant inhibition of Tembusu virus envelope and NS5 gene using an adenovirus-mediated short hairpin RNA delivery system.

Tembusu virus (TMUV) is a mosquito-borne flavivirus, which was first isolated in the tropics during the 1970s. Recently, a disease characterized by ovarian haemorrhage and neurological symptoms was observed in ducks in China, which threatens poultry production. However, there is no suitable vaccination strategy or effective antiviral drugs to combat TMUV infections. Consequently, there is an urgent need to develop a new anti-TMUV therapy. In this study, we report an efficient short hairpin RNA (shRNA) delivery strategy for the inhibition of TMUV production using an adenovirus vector system. Using specifically designed shRNAs based on the E and NS5 protein genes of TMUV, the vector-expressed viral genes, TMUV RNA replication and infectious virus production were downregulated at different levels in Vero cells, where the shRNA (NS52) was highly effective in inhibiting TMUV. Using the human adenovirus type 5 shRNA delivery system, the recombinant adenovirus (rAd-NS52) inhibited TMUV multiplication with high efficiency. Furthermore, the significant dose-dependent inhibition of viral RNA copies induced by rAd-NS52 was found in TMUV-infected cells, which could last for at least 96h post infection. Our results indicated that the adenovirus-mediated delivery of shRNAs could play an active role in future TMUV antiviral therapeutics.

Development of a stable Japanese encephalitis virus replicon cell line for antiviral screening.

Japanese encephalitis virus (JEV), an important pathogen in Eastern and Southern Asia and the Pacific, has spread to Australia and other territories in recent years. Although the vaccine for JEV has been used in some countries, development of efficient antiviral drugs is still an urgent requirement. Replicon systems have been widely used in the research of viral replication and antiviral screening for West Nile virus (WNV), yellow fever virus (YFV) and dengue virus (DENV). Here, a novel JEV replicon harboring the Rluc and Pac gene (JEV-Pac-Rluc-Rep) was constructed. Furthermore, we established a BHK-21 cell line harboring JEV-Pac-Rluc-Rep (BHK-21/PAC/Rluc cell line) through continuous puromycin selection. Characterization of cell line stability showed that the replicon RNA could persistently replicate in this cell line for at least up to 10 rounds of passage. Using a known flavivirus inhibitor, the JEV replicon cell line was validated for antiviral screening. The JEV replicon cell line will be a valuable tool for both compound screening and viral replication studies.

Jak Inhibitors Modulate Production of Replication-Competent Zika Virus in Human Hofbauer, Trophoblasts, and Neuroblastoma cells.

Zika Virus (ZIKV) is a flavivirus that has been implicated in causing brain deformations, birth defects, and microcephaly in fetuses, and associated with Guillain-Barre syndrome. Mechanisms responsible for transmission of ZIKV across the placenta to the fetus are incompletely understood. Herein, we define key events modulating infection in clinically relevant cells, including primary placental macrophages (human Hofbauer cells; HC), trophoblasts, and neuroblastoma cells. Consistent with previous findings, HC and trophoblasts are permissive to ZIKV infection. Decrease of interferon signaling by Jak ½ inhibition (using ruxolitinib) significantly increased ZIKV replication in HC, trophoblasts, and neuroblasts. Enhanced ZIKV production in ruxolitinib-treated HC was associated with increased expression of HLA-DR and DC-SIGN. Nucleoside analogs blocked ruxolitinib-mediated production of extracellular virus. Although low-level ZIKV infection occurred in untreated HC and trophoblasts, replicating virions were incapable of infecting naive Vero cells. These deficient virions from untreated HC have "thin-coats" suggesting an immature structure. Blocking Jak ½ signaling (with ruxolitinib) restored replication competence as virions produced under these conditions confer cytopathic effects to naive Vero cells. These data demonstrate that Jak-STAT signaling directly impacts the ability of primary placental cells to produce replication-competent virus and is a key determinant in the production of mature virions in clinically relevant cells, including HC and trophoblasts. Design of targeted agents to prevent ZIKV replication in the placenta should consider Jak ½ signaling, the impact of its block on ZIKV infection, and subsequent transmission to the fetus.

Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques.

Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.

Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia.

The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014-2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1-3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.

Cycluridine: A novel antiviral effective against flaviviruses.

This review describes the contemporary state of research for antivirals effective against flaviviruses, especially focusing on inhibitors of the pestivirus causative agent of bovine viral diarrhoea virus. We highlight cycluridine, an originally synthesized Mannich's base [a tetrahydro-2(1H)-pyrimidinones derivative], as a highly effective antiviral possessing a strong inhibitory effect on bovine viral diarrhoea virus replication. Cycluridine was active against replication of a wide variety of bovine viral diarrhoea virus strains in cell cultures. The drug-sensitive period in the bovine viral diarrhoea virus replication cycle included the latent period and the exponential phase; a 90-min delay in the peak of viral RNA synthesis was observed. Cycluridine administered orally manifested a pronounced protective effect in calves with natural mucosal disease/viral diarrhoea and calves experimentally infected with bovine viral diarrhoea virus. Its magnitude of activity and selectivity places cycluridine in the lead among all known substances with anti- bovine viral diarrhoea virus activity. Additionally, cycluridine applied subcutaneously showed anti-tick-born encephalitis virus activity, manifesting a marked protective effect in mice infected with tick-born encephalitis virus. Cycluridine could be a prospective antiviral in veterinary and medical practice for the treatment of bovine viral diarrhoea virus and other flavivirus infections.

Clinical and serological tests for arboviruses in free-living domestic pigeons (Columba livia).

In this study, we evaluated the role of free-living domestic pigeons (Columba livia) as a reservoir of arboviruses in the city of Belém, state of Pará, Brazil. We investigated the presence of antibodies against the most prevalent arboviruses.

Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus.

Zika virus (ZIKV) is widely distributed in Brazil and the Northeast Region (NE) is the most affected zone, showing the highest incidence of microcephaly associated with ZIKV congenital infections worldwide. We report attempts to infect three populations of Culex quinquefasciatus from severely affected sites in the NE and Southeast Region (SE) of Brazil with three strains of ZIKV isolated from these localities. An Aedes aegypti population from the SE was used as a positive control. All tested Cx. quinquefasciatus populations were refractory to the ZIKV isolates. For these reasons, we believe Cx. quinquefasciatus should not be considered a potential vector of ZIKV in Brazil.

Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines.

The genus Flavivirus contains more than 70 single-stranded, positive-sense arthropod-borne RNA viruses. Some flaviviruses are particularly medically important to humans and other vertebrates including dengue virus (DENV), West Nile virus, and yellow fever virus. These viruses are transmitted to vertebrates by mosquitoes and other arthropod species. Mosquitoes are also infected by insect-specific flaviviruses (ISFs) that do not appear to be infective to vertebrates. Cell fusing agent virus (CFAV) was the first described ISF, which was discovered in an Aedes aegypti cell culture. We found that while CFAV infection could be significantly reduced by application of RNAi against the NS5 gene, removal of the treatment led to quick restoration of CFAV replication. Interestingly, we found that CFAV infection significantly enhanced replication of DENV, and vice versa, DENV infection significantly enhanced replication of CFAV in mosquito cells. We have shown that CFAV infection leads to increase in the expression of ribonuclease kappa (RNASEK), which is known to promote infection of viruses that rely on endocytosis and pH-dependent entry. Knockdown of RNASEK by dsRNA resulted in reduced DENV replication. Thus, increased expression of RNASEK induced by CFAV is likely to contribute to enhanced DENV replication in CFAV-infected cells.

Usutu Virus Antibodies in Blood Donors and Healthy Forestry Workers in the Lombardy Region, Northern Italy.

Usutu virus (USUV), a member of the genus Flavivirus, is known to circulate at low prevalence in Northern Italy, and has been reported to cause overt infection. USUV was first reported in Europe in 2001, but a retrospective study showed that it has been present in Italy at least since 1996. Seroprevalence data for USUV antibodies in sera are being collected in different European countries, showing circulation at low prevalence in human populations. Interestingly, two consecutive studies in Northern Italy indicate a possible increase in the presence of the virus, from 0% to 0.23% seroprevalence in blood donors. In this study, antibodies against USUV were measured in 3 consecutive blood samples collected from October 2014 to December 2015 from 33 forestry workers in the Po river valley, while samples from 200 blood donors from the same geographical area were tested in parallel. Neutralizing and IgG antibodies were found in six forestry workers (18.1%) and in two blood donors (1%). Our results indicate that USUV circulation in the examined area, part of a highly populated region in Northern Italy, is higher than expected. Healthy subjects exhibit a higher prevalence than what was found in a previous report in an adjoining region (0.23%), while the population at risk shows a much higher prevalence value (18.1%).

Current trends in Zika vaccine development.

The Zika virus (ZIKV) was first isolated in 1947 in Uganda. While it took 60 years for this virus to cause major outbreaks, an important shift in its ability to cause epidemics took place in the first and second decades of the this century: in 2007 in Yap Island, Micronesia, followed by French Polynesia in 2013 and, finally in 2015 and 2016, when ZIKV infections occurred throughout South America, Central America and the Caribbean, spreading rapidly to reach North America in just a single year. No licensed prophylactic vaccine is yet available but recent efforts towards the development of a vaccine have been remarkable from both the private and public sectors and include new candidate vaccines ranging from the classical live-attenuated or inactivated vaccines to more sophisticated approaches such as mRNA or genetically engineered viral platforms. Previous successes with licensed flavivirus vaccines indicate that a protective ZIKV vaccine should be an achievable goal. Nevertheless, numerous pre- and post-licensure challenges need to be taken into account, such as the interaction of vaccine-induced immune responses with other flaviviruses, in particular with dengue, where antibody-dependent enhancement could become an issue, and the importance of a rapid induction of protective responses during pregnancy.

Accuracy estimation of an indirect ELISA for the detection of West Nile Virus antibodies in wild birds using a latent class model.

West Nile virus (WNV) and Usutu virus (USUV), genus Flavivirus, are members of the Japanese encephalitis virus antigenic complex, and are maintained primarily in an enzootic cycle between mosquitoes and birds. WNV is zoonotic, and poses a threat to public health, especially in relation to blood transfusion. Serosurveillance of wild birds is suitable for early detection of WNV circulation, although concerns remain to be addressed as regards i) the type of test used, whether ELISA, virus neutralization test (VNT), plaque reduction neutralization test (PRNT), ii) the reagents (antigens, revealing antibodies), iii) the different bird species involved, and iv) potential cross-reactions with other Flaviviruses, such as USUV. The authors developed an indirect IgG ELISA with pan-avian specificity using EDIII protein as antigen and a monoclonal antibody (mAb 1A3) with broad reactivity for avian IgG. A total of 140 serum samples were collected from juvenile European magpies (Pica pica) in areas where both WNV and USUV were co-circulating. The samples were then tested using this in-house ELISA and VNT in parallel. Estimation of test accuracy was performed using different Bayesian two latent class models. At a cut-off set at an optical density percentage (OD%) of 15, the ELISA showed a posterior median of diagnostic sensitivity (DSe) of 88% (95%PCI: 73-99%) and a diagnostic specificity (DSp) of 86% (95%PCI: 68-99%). At this cut-off, ELISA and VNT (cut-off 1/10) performances were comparable: DSe=91% (95%PCI: 79-99%), and DSp=77% (95%PCI: 59-98%). With the cut-off increased to 30 OD%, the ELISA DSe dropped to 78% (95%PCI: 52-99%), and the DSp rose to 94% (95%PCI: 83-100%). In field conditions, the cut-off that yields the best accuracy for the ELISA appears to correspond to 15 OD%. In areas where other Flaviviruses are circulating, however, it might be appropriate to raise the cut-off to 30 OD% in order to achieve higher specificity and reduce the detection of seropositive birds infected by other Flaviviruses, such as USUV.

Participation of dengue virus NS4B protein in the modulation of immune effectors dependent on ER stress in insect cells.

Organisms' reactions to adverse events result in the generation of immune effectors, which, in the case of insects, may be produced from the direct activation of pathways such as Toll, Jak-STAT, Imd, or RNAi or may be derived from the crosstalk of different intracellular pathways. One such pathway, the unfolded protein response (UPR), has the primary objective of restoring homeostasis in the endoplasmic reticulum. In addition, the UPR participates in signaling crosstalk with the immune pathways, generating protection against pathogenic organisms. Dengue virus is a plus-strand RNA virus belonging to the Flavivirus genus that uses the ER as a replication site; during the infection, there are indicators of the activation of the UPR, which in turn, induces the synthesis of internal membranes and preferential translation of viral proteins enhancing the replication. One of the dengue virus proteins, the NS4B can block the pathway of α/β interferon in mammals. However, what happen in insects is interesting because the lack of the main antiviral pathway, the interferon and the role of the NS4B protein in the UPR-immunity relationship can be better understood. Thus, in this study, we demonstrated that the DENV2/16681 NS4B protein is capable of modulating the immune effectors that result from the activation of the UPR in insect cells.

Progress and Works in Progress: Update on Flavivirus Vaccine Development.

Most areas of the globe are endemic for at least one flavivirus, putting billions at risk for infection. This diverse group of viral pathogens causes a range of manifestations in humans from asymptomatic infection to hemorrhagic fever to encephalitis to birth defects and even death. Many flaviviruses are transmitted by mosquitos and have expanded in geographic distribution in recent years, with dengue virus being the most prevalent, infecting approximately 400 million people each year. The explosive emergence of Zika virus in Latin America in 2014 refocused international attention on this medically important group of viruses. Meanwhile, yellow fever has caused major outbreaks in Africa and South America since 2015 despite a reliable vaccine. There is no vaccine for Zika yet, and the only licensed dengue vaccine performs suboptimally in certain contexts. Further lessons are found when considering the experience with Japanese encephalitis virus, West Nile virus, and tickborne encephalitis virus, all of which now have protective vaccination in human or veterinary populations. Thus, vaccination is a mainstay of public health strategy for combating flavivirus infections; however, numerous challenges exist along the path from development to delivery of a tolerable and effective vaccine. Nevertheless, intensification of investment and effort in this area holds great promise for significantly reducing the global burden of disease attributable to flavivirus infection.

Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti (= Aedes aegypti) populations.

In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95  ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95  > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.

Co-refolding of a functional complex of Dengue NS3 protease and NS2B co-factor domain and backbone resonance assignment by solution NMR.

A novel approach for separate expression of dengue virus NS3 protease and its NS2B cofactor domain is described in this paper. The two proteins are expressed in E.coli and purified separately and subsequently efficiently co-refolded to form a stable complex. This straightforward and robust method allows for separate isotope labeling of the two proteins, facilitating analysis by nuclear magnetic resonance (NMR) spectroscopy. Unlinked NS2B-NS3pro behaves better in NMR spectroscopy than linked NS2B-NS3pro, which has resulted in the backbone resonance assignment of the unlinked NS2B-NS3 complex bound to a peptidic boronic acid inhibitor.