PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

flavivirus - Top 30 Publications

Inhibitors of Yellow Fever Virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: Design, synthesis and antiviral evaluation.

By the antiviral screening of an in house library of pyrazoline compounds, 4-(3-(4-phenoxyphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamide (5a) was identified as a promising hit compound for the development of anti- Yellow Fever Virus (YFV) agents. Structural optimization studies were focused on the development of 5a analogues which retain the potency as YFV inhibitors and show a reduced cytotoxicity. The synthesized 1-3,5-triphenyl-pyrazolines (4a-j, 5a-j, 6a-j) were evaluated in cell based assays for cytotoxicity and antiviral activity against representative viruses of two of the three genera of the Flaviviridae family, i.e.: Pestivirus (BVDV) and Flavivirus (YFV). These compounds were also tested against a large panel of different pathogenic RNA and DNA viruses. Most of the new 1-3,5-triphenyl-pyrazolines (4a-j, 5a-j, 6a-j) exhibited a specific activity against YFV, showing EC50 values in the low micromolar range with almost a 10-fold improvement in potency compared to the reference inhibitor 6-azauridine. However, the selectivity indexes of the unsubstituted (4a-j) and the phenoxy (5a-j) analogues were generally modest due to the pronounced cytotoxicity against BHK-21 cells. Otherwise, the benzyloxy derivatives (6a-j) generally coupled high potency and selectivity. On the basis of both anti-YFV activity and selectivity index, pyrazolines 6a and 6b were chosen for time of addition experiments. The selected pyrazolines and the reference inhibitor 6-azauridine displayed maximal inhibition when added in the pretreatment or during the infection.

Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate.

Zika virus (ZIKV, genus Flavivirus) has emerged as a major mosquito-transmitted human pathogen, with recent outbreaks associated with an increased incidence of neurological complications, particularly microcephaly and the Guillain-Barré syndrome. Because the virus has only very recently emerged as an important pathogen, research is being hampered by a lack of reliable molecular tools. Here we report an infectious cDNA (icDNA) clone for ZIKV isolate BeH819015 from Brazil, which was selected as representative of South American ZIKV isolated at early stages of the outbreak. icDNA clones were assembled from synthetic DNA fragments corresponding to the consensus sequence of the BeH819015 isolate. Virus rescued from the icDNA clone had properties identical to a natural ZIKV isolate from South America. Variants of the clone-derived virus, expressing nanoluciferase, enhanced green fluorescent or mCherry marker proteins in both mammalian and insect cells and being genetically stable for multiple in vitro passages, were obtained. A ZIKV subgenomic replicon, lacking a prM- and E glycoprotein encoding region and expressing a Gaussia luciferase marker, was constructed and shown to replicate both in mammalian and insect cells. In the presence of the Semliki Forest virus replicon, expressing ZIKV structural proteins, the ZIKV replicon was packaged into virus-replicon particles. Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.

Guillain-Barré Syndrome Associated With Zika Virus Infection in Martinique in 2016: A Prospective Study.

Guillain-Barré syndrome (GBS) has been reported to be associated with Zika virus (ZIKV) infection in case reports and retrospective studies, mostly on the basis of serological tests, with the problematic cross-reacting antibodies of the Flavivirus genus. Some GBS cases do not exhibit a high level of diagnostic certainty. This prospective study aimed to describe the clinical profiles and the frequency of GBS associated with ZIKV during the ZIKV outbreak in Martinique in 2016.

Rapid detection of Powassan virus in a patient with encephalitis by metagenomic sequencing.

We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States.

Innate, T and B Cell Responses in Acute Human Zika Patients.

There is an urgent need for studies of viral persistence and immunity during human Zika infections to inform planning and conduct of vaccine clinical trials.

Neurological Complications in a Polynesian Traveler with Dengue.

In recent times, there has been an increased focus on mosquito-borne Flaviviruses, in particular dengue and Zika. With the reappearance of dengue in Hawai'i and the mainland United States (US), clinicians should be aware of both the common presentations of dengue, as well as other less common complications associated with the disease. Dengue can result in neurologic disorders such as encephalopathy, encephalitis, immune-mediated syndromes, neuromuscular dysfunction, and neuro-ophthalmologic disorders. We present an interesting case of dengue that initially presented with classic symptoms (arthropathy, biphasic fever, and rash) and subsequently developed into a neurologic movement disorder with muscle tightening and twitching of the face, chest, and extremities. We review and update the epidemiology, biology, the clinical presentations including the neurologic complications associated with dengue, as well as their management and areas of future study in this field.

Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III.

The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein from a very large phage-display naive antibody library. These germline-like antibodies, sharing 98%-100% hoLogy with their corresponding germline IGHV genes, bound ZIKV DIII specifically with high affinities. One mAb, m301, broadly neutralized the currently circulating ZIKV strains and showed a synergistic effect with another mAb, m302, in neutralizing ZIKV in vitro and in a mouse model of ZIKV infection. Interestingly, epitope mapping and competitive binding studies suggest that m301 and m302 bind adjacent regions of the DIII C-C' loop, which represents a recently identified cryptic epitope that is intermittently exposed in an uncharacterized virus conformation. This study extended our understanding of antigenic epitopes of ZIKV antibodies and has direct implications for the design of ZIKV vaccines.

Insights into the molecular roles of Zika virus in human reproductive complications and congenital neuropathologies.

The recent upsurge in the association of congenital neurological disorders and infection by the Zika virus (ZIKV) has resulted in increased research focus on the biology of this flavivirus. Studies in animal models indicate that ZIKV can breach the placental barrier and selectively infect and deplete neuroprogenitor cells (NPCs) of the developing fetus, resulting in changes of brain structures, reminiscent of human microcephaly. In vitro and ex vivo studies using human cells and tissues showed that human NPCs and placental cells are targeted by ZIKV. Also of concern is the impact of ZIKV on human reproductive structures, with the potential to cause infertility, as the virus appears to remain in the genital tract for extended periods of time. This review discusses the putative roles of ZIKV on human reproductive complications and congenital neuropathologies.

Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens.

Three novel insect-specific flaviviruses, isolated from mosquitoes collected in Peru, Malaysia (Sarawak), and the United States, are characterized. The new viruses, designated La Tina, Kampung Karu, and Long Pine Key, respectively, are antigenically and phylogenetically more similar to the mosquito-borne flavivirus pathogens, than to the classical insect-specific viruses like cell fusing agent and Culex flavivirus. The potential implications of this relationship and the possible uses of these and other arbovirus-related insect-specific flaviviruses are reviewed.

Enzootic Circulation of Chikungunya Virus in East Africa: Serological Evidence in Nonhuman Kenyan Primates.

Chikungunya virus (CHIKV) is a globally emerging pathogen causing debilitating arthralgia and fever in humans. First identified in Tanzania (1953), this mosquito-borne alphavirus received little further attention until a 2004 re-emergence in Kenya from an unknown source. This outbreak subsequently spread to the Indian Ocean, with adaptation for transmission by a new urban vector. Under the hypothesis that sylvatic progenitor cycles of CHIKV exist in Kenya (as reported in West Africa, between nonhuman primates (NHPs) and arboreal Aedes spp. mosquitoes), we pursued evidence of enzootic transmission and human spillover events. We initially screened 252 archived NHP sera from Kenya using plaque reduction neutralization tests. Given an overall CHIKV seroprevalence of 13.1% (marginally higher in western Kenya), we sought more recent NHP samples during 2014 from sites in Kakamega County, sampling wild blue monkeys, olive baboons, and red-tailed monkeys (N = 33). We also sampled 34 yellow baboons near Kwale, coastal Kenya. Overall, CHIKV seropositivity in 2014 was 13.4% (9/67). Antibodies reactive against closely related o'nyong-nyong virus (ONNV) occurred; however, neutralization titers were too low to conclude ONNV exposure. Seroprevalence for the flavivirus dengue was also detected (28%), mostly near Kwale, suggesting possible spillback from humans to baboons. CHIKV antibodies in some juvenile and subadult NHPs suggested recent circulation. We conclude that CHIKV is circulating in western Kenya, despite the 2004 human outbreaks only being reported coastally. Further work to understand the enzootic ecology of CHIKV in east Africa is needed to identify sites of human spillover contact where urban transmission may be initiated.

Dengue Virus Serotype 2 Established in Northern Mozambique (2015-2016).

After the report of an outbreak of dengue virus serotype 2 in 2014 in Nampula and Pemba cities, northern Mozambique, a surveillance system was established by the National Institute of Health. A study was performed during 2015-2016 to monitor the trend of the outbreak and confirm the circulating serotype of dengue virus (DENV). After the inclusion of consenting patients who met the case definition, samples from 192 patients were tested for the presence of nonstructural protein 1 antigen, and 60/192 (31%) samples were positive. Further analysis included DENV IgM antibodies, with 39 (20%) IgM positive cases. Reverse transcriptase (RT) PCR was performed for identification of the prevailing DENV serotype; 21/23 tested samples were DENV-2 positive, with DENV-2 present in both affected cities. When sequencing DENV, phenotype Cosmopolitan was identified. The surveillance indicates ongoing spread of DENV-2 in northern Mozambique 2 years after the first report of the outbreak.

Zika virus disease-associated Guillain-Barré syndrome-Barranquilla, Colombia 2015-2016.

An outbreak of Guillain-Barré syndrome (GBS), a disorder characterized by acute, symmetric limb weakness with decreased or absent deep-tendon reflexes, was reported in Barranquilla, Colombia, after the introduction of Zika virus in 2015. We reviewed clinical data for GBS cases in Barranquilla and performed a case-control investigation to assess the association of suspect and probable Zika virus disease with GBS.

Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection.

In the absence of approved therapeutics, Zika virus (ZIKV)'s recent prolific outbreaks in the Americas, together with impacts on unborn fetuses of infected mothers, make it a pressing human health concern worldwide. Although a key player in viral replication in the infected host cell cytoplasm, ZIKV non-structural protein 5 (NS5) appears to contribute integrally to pathogenesis by localising in the host cell nucleus, in similar fashion to NS5 from Dengue virus (DENV). We show here for the first time that ZIKV NS5 is recognized with high nanomolar affinity by the host cell importin α/β1 heterodimer, and that this interaction can be blocked by the novel DENV NS5 targeting inhibitor N-(4-hydroxyphenyl) retinamide (4-HPR). Importantly, we show that 4-HPR has potent anti-ZIKV activity at low μM concentrations. With an established safety profile for human use, 4-HPR represents an exciting possibility as an anti-ZIKV agent.

A dual marker label free electrochemical assay for Flavivirus dengue diagnosis.

Dengue is a RNA viral illness of the genus Flavivirus which can cause, depending on the pervasiveness of the infection, hemorrhagic dengue fever or dengue shock syndrome. Herein we present an electrochemical label free approach enabling the rapid sensitive quantification of NS1 and IgG (supporting an ability to distinguish primary and secondary infections). Using a bifunctional SAM containing PEG moieties and a tethered redox thiol, both markers are detectable across clinically relevant levels by label free impedance derived redox capacitance. A subsequent frequency specific immittance function approach enables assaying (within seconds) with no impairment of analytical quality (linearity, sensitivity and variance).

Pathogenesis and sexual transmission of Spondweni and Zika viruses.

The Spondweni serogroup of viruses (Flaviviridae, Flavivirus) is comprised of Spondweni virus (SPONV) and Zika virus (ZIKV), which are mosquito-borne viruses capable of eliciting human disease. Numerous cases of ZIKV sexual transmission in humans have been documented following the emergence of the Asian genotype in the Americas. The African ZIKV genotype virus was previously implicated in the first reported case of ZIKV sexual transmission. Reports of SPONV infection in humans have been associated with non-specific febrile illness, but no association with sexual transmission has been reported. In order to assess the relative efficiency of sexual transmission of different ZIKV strains and the potential capacity of SPONV to be sexually transmitted, viral loads in the male reproductive tract and in seminal fluids were assessed in interferon α/β and -γ receptor deficient (AG129) mice. Male mice were inoculated subcutaneously with Asian genotype ZIKV strains PRVABC59 (Puerto Rico, 2015), FSS13025 (Cambodia, 2010), or P6-740 (Malaysia, 1966); African genotype ZIKV strain DakAr41524 (Senegal, 1984); or SPONV strain SAAr94 (South Africa, 1955). Infectious virus was detected in 60-72% of ejaculates collected from AG129 mice inoculated with ZIKV strains. In contrast, only 4% of ejaculates from SPONV-inoculated AG129 males were found to contain infectious virus, despite viral titers in the testes that were comparable to those of ZIKV-inoculated mice. Based on these results, future studies should be undertaken to assess the role of viral genetic determinants and host tropism that dictate the differential sexual transmission potential of ZIKV and SPONV.

Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques.

Therapies to prevent maternal Zika virus (ZIKV) infection and its subsequent fetal developmental complications are urgently required. We isolated three potent ZIKV-neutralizing monoclonal antibodies (nmAbs) from the plasmablasts of a ZIKV-infected patient-SMZAb1, SMZAb2, and SMZAb5-directed against two different domains of the virus. We engineered these nmAbs with Fc LALA mutations that abrogate Fcγ receptor binding, thus eliminating potential therapy-mediated antibody-dependent enhancement. We administered a cocktail of these three nmAbs to nonhuman primates 1 day before challenge with ZIKV and demonstrated that the nmAbs completely prevented viremia in serum after challenge. Given that numerous antibodies have exceptional safety profiles in humans, the cocktail described here could be rapidly developed to protect uninfected pregnant women and their fetuses.

Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.

Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens, used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research.

West Nile virus in overwintering mosquitoes, central Europe.

West Nile virus (WNV) is currently the most important mosquito-borne pathogen spreading in Europe. Data on overwintering of WNV in mosquitoes are crucial for understanding WNV circulation in Europe; nonetheless, such data were not available so far.

Yellow fever virus, but not Zika or Dengue virus inhibits T cell receptor-mediated T cell function by an RNA-based mechanism.

The Flavivirus genus within the Flaviviridae is comprised of many important human pathogens including Yellow Fever virus (YFV), Dengue virus (DENV) and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T cell receptor (TCR) signaling by novel RNA and protein based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.

Replication of Zika virus in human prostate cells: a potential source of sexually transmitted virus.

While Zika virus (ZIKV) is mainly transmitted by mosquitoes, numerous cases of sexual transmission have been reported during recent outbreaks. Little is known about which host cell types or entry factors aid in mediating this sexual transmission.

CD-loop extension in Zika virus envelope protein key for stability and pathogenesis.

With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses.

Replication and Excretion of the Live Attenuated Tetravalent Dengue Vaccine CYD-TDV in a Flavivirus-Naive Adult Population: Assessment of Vaccine Viremia and Virus Shedding.

We assessed replication and excretion of the live attenuated tetravalent dengue vaccine (CYD-TDV) into biological fluids following vaccination in dengue-naive adults in Australia.

Zika Virus: What Pediatric Emergency Medicine Physicians Need to Know.

Zika virus is a mosquito-borne Flavivirus. It has emerged as an important infectious agent in the recent past, mainly because of its teratogenic effects on the fetus. This review highlights the epidemiology, diagnosis, and treatment of this emerging infection.

Zika virus and reproduction: facts, questions and current management.

Zika virus (ZIKV) is an arthropod-borne virus of the family Flaviviridae, genus Flavivirus. ZIKV is currently the focus of an ongoing pandemic and worldwide public health emergency. Although originally isolated in 1947, its pathogenesis was poorly known and very few documented infections were published until recently. Its route of transmission and its impact on reproduction and pregnancy have only recently begun to be disclosed.

Progress in Zika virus and its vaccines.

Like Yellow fever virus, Dengue virus, Japanese encephalitis virus and West Nile virus, Zika virus is also a mosquito-borne flavivirus. Since it was isolated in 1947, there has been little concern over Zika virus due to its limited distribution and mild symptoms. In recent years, especially since 2015, Zika virus has become a global concern because of its outbreak in Brazil and associated microcephaly. Vaccines against Zika virus, regarded as the effective measures to control Zika fever epidemic, are being developed in nearly thirty institutions worldwide. In this paper, biology, epidemiology and clinical features of Zika virus were reviewed along with current research and development of different types of Zika vaccines. In addition, several other flavivirus vaccines approved or in clinical trials were briefly introduced, to provide valuable reference for Zika vaccines researchers.

Recent Perspectives on Genome, Transmission, Clinical Manifestation, Diagnosis, Therapeutic Strategies, Vaccine Developments, and Challenges of Zika Virus Research.

One of the potential threats to public health microbiology in 21st century is the increased mortality rate caused by Zika virus (ZIKV), a mosquito-borne flavivirus. The severity of ZIKV infection urged World Health Organization (WHO) to declare this virus as a global concern. The limited knowledge on the structure, virulent factors, and replication mechanism of the virus posed as hindrance for vaccine development. Several vector and non-vector-borne mode of transmission are observed for spreading the disease. The similarities of the virus with other flaviviruses such as dengue and West Nile virus are worrisome; hence, there is high scope to undertake ZIKV research that probably provide insight for novel therapeutic intervention. Thus, this review focuses on the recent aspect of ZIKV research which includes the outbreak, genome structure, multiplication and propagation of the virus, current animal models, clinical manifestations, available treatment options (probable vaccines and therapeutics), and the recent advancements in computational drug discovery pipelines, challenges and limitation to undertake ZIKV research. The review suggests that the infection due to ZIKV became one of the universal concerns and an interdisciplinary environment of in vitro cellular assays, genomics, proteomics, and computational biology approaches probably contribute insights for screening of novel molecular targets for drug design. The review tried to provide cutting edge knowledge in ZIKV research with future insights required for the development of novel therapeutic remedies to curtail ZIKV infection.

Superb feeding behavior of Aedes albopictus transmitting Zika virus.

Disease-mediated mosquitoes have been receiving much attention, as the World Health Organization recently declared the Zika virus a global public health emergency. Mosquitoes transmit pathogens that cause various tropical diseases including malaria, dengue fever and yellow fever as well as Zika virus. The vector efficiency of mosquitoes depends on their blood-feeding characteristics and the mechanics of their blood-sucking pump system, but only a few studies have attempted to investigate these key issues. In this study, we demonstrate the rapid and gluttonous liquid-feeding characteristics of Ae. albopictus which transmits Zika virus can be explained by similar proportion of two blood-sucking pumps and accelerated liquid intake driven by fast expanding of pumps. Our results provide insight into the vector efficiency of Ae. albopictus in terms of feeding velocity, pumping frequency, liquid-intake rate, and wall shear stress.

Envelope-modified tetravalent dengue virus-like particle vaccine: implication for flavivirus vaccine design.

Dengue viruses (DENV) infect 50-100 million people each year. The spread of DENV-associated infections is one of the most serious public health problems worldwide, as there is no widely available vaccine or specific therapeutic for DENV infections. To address this, we developed a novel tetravalent dengue vaccine utilizing virus-like particle (VLP) technology. We created recombinant DENV1-4 VLPs by co-expressing precursor membrane (prM) and envelope (E) proteins, with a F108A mutation in the fusion loop structure of E to increase the production of VLPs in mammalian cells. Immunization with DENV1-4 VLPs as individual, monovalent vaccines elicited strong neutralization activity against each DENV serotype in mice. When immunized as a tetravalent vaccine, DENV1-4 VLPs elicited high levels of neutralization activity against all four serotypes simultaneously. The neutralization antibody response induced by the VLPs was significantly higher than DNA or recombinant E proteins immunization. Moreover, antibody-dependent enhancement (ADE) was not observed against any serotype at 1:10 serum dilution. We also demonstrated that Zika virus (ZIKV) VLP production level was enhanced by introducing the same F108A mutation in ZIKV envelope protein. Taken together, these results suggest that our strategy for DENV VLP production is applicable to other flavivirus VLP vaccine development, due to the similarity in their viral structures and describes the promising development of an effective tetravalent vaccine against the prevalent flavivirus.Importance: The dengue virus poses one of the most serious public health problems worldwide, and the incidence of diseases caused by the virus has increased dramatically. Despite decades of effort, there is no effective treatment against dengue. A safe and potent vaccine against dengue is still needed. We have developed a novel tetravalent dengue vaccine using virus-like particle (VLP) technology, which is non-infectious as it lacks viral genome. Previous attempts by other groups with dengue virus VLPs resulted in generally poor yields. We found that a critical amino acid mutation in the envelope protein enhances the production of VLP. Our tetravalent vaccine elicited potent neutralizing antibody responses against all four serotypes. Our finding can also be applied to vaccine development against other flaviviruses, such as Zika virus or West Nile virus.

Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum.

The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.