A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

mosquito-borne - Top 30 Publications

Ribavirin inhibits Zika virus (ZIKV) replication in vitro and suppresses viremia in ZIKV-infected STAT1-deficient mice.

Zika fever, a mosquito-borne infectious disease caused by Zika virus (ZIKV), is an epidemic disease for which no effective therapy has been established. The recent outbreaks of ZIKV in Brazil and French Polynesia have been linked to a considerable increase in the incidence of fetal microcephaly and other diseases such as Guillain-Barre syndrome. Because there is currently no specific therapy or vaccine, the early exploitation of a method to prevent expansion of ZIKV is a high priority. To validate commonly used antiviral drugs, we evaluated the effect of ribavirin, a drug used to treat hepatitis C with interferon-β (IFN-β), on ZIKV replication. In mammalian cells, we observed an inhibitory effect of ribavirin on ZIKV replication and ZIKV-induced cell death without cytotoxic effect. Furthermore, we found that STAT1-deficient mice, which lack type I IFN signaling, were highly sensitive to ZIKV infection and exhibited lethal outcome. Ribavirin abrogated viremia in ZIKV-infected STAT-1-deficient mice. These data suggest that the inhibition of viral RNA-dependent RNA polymerases may be effective for treatment of ZIKV infection. Our data provide a new insight into the mechanisms for inhibition of ZIKV replication and prevention of Zika fever.

MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers.

Identification of the source of mosquito blood meals is an important component for disease control and surveillance. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an effective tool for mosquito blood meal identification, using the abdomens of freshly engorged mosquitoes. In the field, mosquito abdomens are crushed on Whatman filter papers to determine the host feeding patterns by identifying the origin of their blood meals. The aim of this study was to test whether crushing engorged mosquito abdomens on Whatman filter papers was compatible with MALDI-TOF MS for mosquito blood meal identification. Both laboratory reared and field collected mosquitoes were tested.

Non-Destructive Analysis of the Internal Anatomical Structures of Mosquito Specimens Using Optical Coherence Tomography.

The study of mosquitoes and analysis of their behavior are of crucial importance in the on-going efforts to control the alarming increase in mosquito-borne diseases. Furthermore, a non-destructive and real-time imaging technique to study the anatomical features of mosquito specimens can greatly aid the study of mosquitoes. In this study, we demonstrate the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes. The anatomical features of An. sinensis head, thorax, and abdominal regions, along with the morphology of internal structures, such as foregut, midgut, and hindgut, were studied using OCT imaging. Two-dimensional and three-dimensional OCT images, used in conjunction with histological images, proved useful for anatomical analysis of mosquito specimens. By presenting this work as an initial study, we demonstrate the applicability of OCT for future mosquito-related entomological research, and also in identifying changes in mosquito anatomical structure.

Outbreak and Cocirculation of Three Different Usutu Virus Strains in Eastern Germany.

Usutu virus (USUV) is a mosquito-borne flavivirus accounting for large-scale deaths in resident bird populations. In this study, we show the introduction of USUV to Eastern Germany resulting in massive death of birds, particularly blackbirds (Turdus merula). We found that three diverse USUV lineages ("Europe 3," "Africa 2," and "Africa 3-like") circulated simultaneously. Moreover, we detected USUV in Culex pipiens in a region where no dead birds were reported, strengthening the need for mosquito monitoring to uncover the spread of arboviruses. Furthermore, phylogenetic analyses revealed that mutations accumulated, in particular, in the NS3 region within short time periods. In addition, comparison of whole-genome sequences showed that diverse isolates of the cluster "Africa 3-like" are cocirculating in Germany due to independent introduction events.

Assessing human risk of illness with West Nile virus mosquito surveillance data to improve public health preparedness.

Surveillance for West Nile virus (WNV) and other mosquito-borne pathogens involves costly and time-consuming collection and testing of mosquito samples. One difficulty faced by public health personnel is how to interpret mosquito data relative to human risk, thus leading to a failure to fully exploit the information from mosquito testing. The objective of our study was to use the information gained from historic West Nile virus mosquito testing to determine human risk relative to mosquito infection and to assess the usefulness of our mosquito infection forecasting models to give advance warning. We compared weekly mosquito infection rates from 2004 to 2013 to WNV case numbers in Illinois. We then developed a weather-based forecasting model to estimate the WNV mosquito infection rate one to 3 weeks ahead of mosquito testing both statewide and for nine regions of Illinois. We further evaluated human illness risk relative to both the measured and the model-estimated infection rates to provide guidelines for public health messages. We determined that across 10 years, over half of human WNV cases occurred following the 29 (of 210) weeks with the highest mosquito infection rates. The values forecasted by the models can identify those time periods, but model results and data availability varied by region with much stronger results obtained from regions with more mosquito data. The differences among the regions may be related to the amount of surveillance or may be due to diverse landscape characteristics across Illinois. We set the stage for better use of all surveillance options available for WNV and described an approach to modelling that can be expanded to other mosquito-borne illnesses.

Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense.

Recent virus discovery programs have identified an extensive reservoir of viruses in arthropods. It is thought that arthropod viruses, including mosquito-specific viruses, are ancestral to vertebrate-pathogenic arboviruses. Mosquito-specific viruses are restricted in vertebrate cells at multiple levels, including entry, RNA replication, assembly, and by the inability to replicate at high temperatures. Moreover, it is likely that the vertebrate immune system suppresses replication of these viruses. The evolution from single to dual-host tropism may also require changes in the course of infection in the mosquito host. In this review we explore the adaptive changes required for a switch from a mosquito-specific to a mosquito-borne transmission cycle.

Modeling the transmission and control of Zika in Brazil.

Zika virus, a reemerging mosquito-borne flavivirus, started spread across Central and Southern America and more recently to North America. The most serious impacted country is Brazil. Based on the transmission mechanism of the virus and assessment of the limited data on the reported suspected cases, we establish a dynamical model which allows us to estimate the basic reproduction number R 0 = 2.5020. The wild spreading of the virus make it a great challenge to public health to control and prevention of the virus. We formulate two control models to study the impact of releasing transgenosis mosquitoes (introducing bacterium Wolbachia into Aedes aegypti) on the transmission of Zika virus in Brazil. Our models and analysis suggest that simultaneously releasing Wolbachia-harboring female and male mosquitoes will achieve the target of population replacement, while releasing only Wolbachia-harboring male mosquitoes will suppress or even eradicate wild mosquitoes eventually. We conclude that only releasing male Wolbachia mosquitoes is a better strategy for control the spreading of Zika virus in Brazil.

Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals.

Infection of mosquitoes is an essential step for the transmission of mosquito-borne arboviruses in nature. Engorgement of infectious blood meals from viremic infected vertebrate hosts allows the entry of viruses and initiates infection of midgut epithelial cells. Historically, the infection process of arboviruses in mosquitoes has been studied through the engorgement of mosquitoes from viremic laboratory animals or from artificial feeders containing blood mixed with viruses harvested from cell cultures. The latter approach using so-called artificial blood meals is more frequently used since it is readily optimized to maximize viral titer, negates the use of animals and can be used with viruses for which there are no small animal models. Use of artificial blood meals has enabled numerous studies on mosquito infections with a wide variety of viruses; however, as described here, with suitable modification it can also be used to study the interplay between infection, specific blood components, and physiological consequences associated with blood engorgement. For hematophagous female mosquitoes, blood is the primary nutritional source supporting all physiological process including egg development, and also influences neurological processes and behaviors such as host-seeking. Interactions between these blood-driven vector biological processes and arbovirus infection that is mediated via blood engorgement have not yet been specifically studied. This is in part because presentation of virus in whole blood inevitably induces enzymatic digestion processes, hormone driven oogenesis, and other biological changes. In this study, the infection process of Zika virus (ZIKV) in Aedes aegypti was characterized by oral exposure via viral suspension meals within minimally bovine serum albumin complemented medium or within whole blood. The use of bovine serum albumin in infectious meals provides an opportunity to evaluate the role of serum albumin during the process of flavivirus infection in mosquitoes.

Robust fluorescent labelling of micropipettes for use in fluorescence microscopy: application to the observation of a mosquito borne parasite infection.

The ability to monitor micropipette injections with a high-resolution fluorescent microscope has utility for a variety of applications. Herein, different approaches were tested for creating broad-band fluorescently labelled glass micropipettes including: UV cured glass glues, baked glass enamel containing fluorescent dyes as well as nanodiamonds attached during pipette formation in the microforge. The most robust and simplest approach was to use labelled baked enamel on the exterior of the pipette. This approach was tested using pipettes designed to mimic a mosquito proboscis for the injection of the malaria parasite, Plasmodium spp., into the dermis of a living mouse ear. The pipette (∼30 micron diameter) was easily detected in the microscopy field of view and tolerated multiple insertions through the skin. This simple inexpensive approach to fluorescently labelling micropipettes will aid in the development of procedures under the fluorescent microscope.

Rift Valley fever virus and European mosquitoes: vector competence of Culex pipiens and Stegomyia albopicta (= Aedes albopictus).

Rift Valley fever (RVF) is a mosquito-borne disease caused by the Rift Valley fever virus (RVFV). Rift Valley fever affects a large number of species, including human, and has severe impact on public health and the economy, especially in African countries. The present study examined the vector competence of three different European mosquito species, Culex pipiens (Linnaeus, 1758) form molestus (Diptera: Culicidae), Culex pipiens hybrid form and Stegomyia albopicta (= Aedes albopictus) (Skuse, 1894) (Diptera: Culicidae). Mosquitoes were artificially fed with blood containing RVFV. Infection, disseminated infection and transmission efficiency were evaluated. This is the first study to assess the transmission efficiency of European mosquito species using a virulent RVFV strain. The virus disseminated in Cx. pipiens hybrid form and in S. albopicta. Moreover, infectious viral particles were isolated from saliva of both species, showing their RVFV transmission capacity. The presence of competent Cx. pipiens and S. albopicta in Spain indicates that an autochthonous outbreak of RVF may occur if the virus is introduced. These findings provide information that will help health authorities to set up efficient entomological surveillance and RVFV vector control programmes.

Significant inhibition of Tembusu virus envelope and NS5 gene using an adenovirus-mediated short hairpin RNA delivery system.

Tembusu virus (TMUV) is a mosquito-borne flavivirus, which was first isolated in the tropics during the 1970s. Recently, a disease characterized by ovarian haemorrhage and neurological symptoms was observed in ducks in China, which threatens poultry production. However, there is no suitable vaccination strategy or effective antiviral drugs to combat TMUV infections. Consequently, there is an urgent need to develop a new anti-TMUV therapy. In this study, we report an efficient short hairpin RNA (shRNA) delivery strategy for the inhibition of TMUV production using an adenovirus vector system. Using specifically designed shRNAs based on the E and NS5 protein genes of TMUV, the vector-expressed viral genes, TMUV RNA replication and infectious virus production were downregulated at different levels in Vero cells, where the shRNA (NS52) was highly effective in inhibiting TMUV. Using the human adenovirus type 5 shRNA delivery system, the recombinant adenovirus (rAd-NS52) inhibited TMUV multiplication with high efficiency. Furthermore, the significant dose-dependent inhibition of viral RNA copies induced by rAd-NS52 was found in TMUV-infected cells, which could last for at least 96h post infection. Our results indicated that the adenovirus-mediated delivery of shRNAs could play an active role in future TMUV antiviral therapeutics.

Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.

Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.

Epidemiology and Clinical Characteristics of Zika Virus Infections Imported into Korea from March to October 2016.

Zika is a re-emerging, mosquito-borne viral infection, which has been recently shown to cause microcephaly and Guillain-Barré syndrome. Since 2015 the number of infected patients has increased significantly in South America. The purpose of this study was to identify the epidemiologic and clinical characteristics of patients with Zika virus (ZIKV) infections in Korea. Patients who had visited areas of risk and tested positive in the ZIKV reverse transcriptase polymerase chain reaction (RT-PCR) in blood, urine, or saliva specimens were included. The first Korean case of ZIKV infection was reported in March 2016, and 14 cases had been reported by October 2016. The median age of the patients was 34 years (19-64 years). Ten patients had been exposed in Southeast Asia and 4 in Latin America. Rash was the most common symptom (92.9%; 13/14), followed by myalgia (50.0%; 7/14), and arthralgia (28.6%, 4/14). There were no neurologic abnormalities and none of the patients was pregnant. Results of biochemical tests were normal. Positivity rates of RT-PCR for ZIKV in serum, urine, and saliva were 53.8%, 100.0%, and 83.3%, respectively in the first week of symptoms. In conclusion, 14 patients with ZIKV infections were reported in Korea by October 2016 and all of them had mild clinical symptoms.

Complete Genome Sequences of Getah Virus Strains Isolated from Horses in 2016 in Japan.

Getah virus is mosquito-borne and causes disease in horses and pigs. We sequenced and analyzed the complete genomes of three strains isolated from horses in Ibaraki Prefecture, eastern Japan, in 2016. They were almost identical to the genomes of strains recently isolated from horses, pigs, and mosquitoes in Japan.

An analysis of community perceptions of mosquito-borne disease control and prevention in Sint Eustatius, Caribbean Netherlands.

In the Caribbean, mosquito-borne diseases are a public health threat. In Sint Eustatius, dengue, Chikungunya and Zika are now endemic. To control and prevent mosquito-borne diseases, the Sint Eustatius Public Health Department relies on the community to assist with the control of Aedes aegypti mosquito. Unfortunately, community based interventions are not always simple, as community perceptions and responses shape actions and influence behavioural responses Objective: The aim of this study was to determine how the Sint Eustatius population perceives the Aedes aegypti mosquito, mosquito-borne diseases and prevention and control measures and hypothesized that increased knowledge of the virus, vector, control and prevention should result in a lower AQ1 prevalence and incidence of mosquito-borne diseases.

Sex specific molecular responses of quick-to-court protein in Indian malarial vector Anopheles culicifacies: conflict of mating versus blood feeding behaviour.

Understanding the molecular basis of mosquito behavioural complexity plays a central role in designing novel molecular tools to fight against their vector-borne diseases. Although the olfactory system plays an important role in guiding and managing many behavioural responses including feeding and mating, but the sex-specific regulation of olfactory responses remain poorly investigated. From our ongoing transcriptomic data annotation of olfactory tissue of blood fed adult female An. culicifacies mosquitoes; we have identified a 383 bp long unique transcript encoding a Drosophila homolog of the quick-to-court protein. Previously this was shown to regulate courtship behaviour in adult male Drosophila. A comprehensive in silico analysis of the quick-to-court (qtc) gene of An. culicifacies (Ac-qtc) predicts a 1536 bp single copy gene encoding 511 amino acid protein, having a high degree of conservation with other insect homologs. The age-dependent increased expression of putative Ac-qtc correlated with the maturation of the olfactory system, necessary to meet the sex-specific conflicting demand of mating (mate finding) versus host-seeking behavioural responses. Sixteen to eighteen hours of starvation did not alter Ac-qtc expression in both sexes, however, blood feeding significantly modulated its response in the adult female mosquitoes, confirming that it may not be involved in sugar feeding associated behavioural regulation. Finally, a dual behavioural and molecular assay indicated that natural dysregulation of Ac-qtc in the late evening might promote the mating events for successful insemination. We hypothesize that Ac-qtc may play a unique role to regulate the sex-specific conflicting demand of mosquito courtship behaviour versus blood feeding behaviour in the adult female mosquitoes. Further elucidation of this molecular mechanism may provide further information to evaluate Ac-qtc as a key molecular target for mosquito-borne disease management.

Dengue Fever-induced Thrombotic Microangiopathy: An Unusual Cause of Renal Failure.

Dengue fever is a tropical infection, which is mosquito-borne disease, caused by dengue virus and spread by Aedes mosquitoes. The incidence of dengue fever has risen rapidly over the past few years. About half of dengue infections are asymptomatic, and a great majority present with fever and body ache. However, the occurrence of complications is well known, including acute kidney injury (AKI). AKI in dengue is usually attributable to a pre-renal cause. Thrombotic microangiopathy is an extremely rare complication of dengue fever, with only a few published case reports in medical literature. This case intends to highlight the importance of recognizing dengue fever-induced thrombotic microangiopathy by physicians and pathologists, enabling better diagnosis and management of this life-threatening condition.

Modelling malaria incidence by an autoregressive distributed lag model with spatial component.

The influence of climatic variables on the dynamics of human malaria has been widely highlighted. Also, it is known that this mosquito-borne infection varies in space and time. However, when the data is spatially incomplete most popular spatio-temporal methods of analysis cannot be applied directly. In this paper, we develop a two step methodology to model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, and humidity as well as the regional sea surface temperatures (SST) in the northern coast of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our results show that the best model to account for the variations of malaria incidence from 2001 to 2008 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model that included the accumulated local precipitation in combination with the local maximum temperature of the preceding month as positive regressors. Additionally, we show that although malaria dynamics is highly heterogeneous in space, a detailed analysis of the estimated spatial parameters in our model yield important insights regarding the joint behavior of the disease incidence across the different counties in our study.

Immune correlates of protection for dengue: State of the art and research agenda.

Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials.

Ross River virus disease clinical presentation, pathogenesis and current therapeutic strategies.

Ross River virus (RRV) is an arthitogenic alphavirus capable of causing outbreaks of debilitating musculoskeletal inflammatory disease in humans. RRV is the most common mosquito-borne disease in Australia, with outbreaks of RRV generally occurring during seasonal wet and warm conditions. Patients with Ross River virus disease (RRVD) typically present with fever, polyarthralgia, myalgia and a maculopapular erythematous rash. Treatment of the disease is usually palliative with no licensed vaccines or antiviral therapies currently available. In an effort to better inform therapeutic design, much progress has been made to understand the pathogenesis of RRVD. Progress has been largely driven by clinical evaluations supported by research using established murine models of RRVD, able to accurately replicate human disease. In this review we describe RRVD pathogenesis and the role of the host immune response, with particular focus on insights from studying animal models. We also discuss prospects for effective vaccines, preclinical development of therapeutic strategies and raise important questions for future RRV research.

3,5-Bis(arylidene)-4-piperidones as potential dengue protease inhibitors.

Dengue is a severe mosquito-borne viral infection causing half a million deaths annually. Dengue virus NS2B/NS3 protease is a validated target for anti-dengue drug design. A series of hitherto unreported 3,5-bis(arylidene)-4-piperidones analogues 4a-4j were synthesized and screened in silico against DENV2 NS2B/NS3 protease to elucidate their binding mechanism and orientation around the active sites. Results were validated through an in vitro DENV2 NS2B/NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Nitro derivatives of 3,5-bis(arylidene)-4-piperidones (4e and 4j) emerged as promising lead molecules for novel protease inhibitors with an IC50 of 15.22 and 16.23 µmol/L, respectively, compared to the standard, panduratin A, having IC50 of 57.28 µmol/L.

Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys.

Development of vaccines against mosquito-borne Flaviviruses is complicated by the occurrence of antibody-dependent enhancement (ADE), which can increase disease severity. Long-term delivery of neutralizing antibodies (nAbs) has the potential to effectively block infection and represents an alternative to vaccination. The risk of ADE may be avoided by using prophylactic nAbs harboring amino acid mutations L234A and L235A (LALA) in the immunoglobulin G (IgG) constant region. Here, we used recombinant adeno-associated viruses (rAAVs) to deliver the anti-dengue virus 3 (DENV3) nAb P3D05. While the administration of rAAV-P3D05-rhesus immunoglobulin G1 (rhIgG1)-LALA to rhesus macaques engendered DENV3-neutralizing activity in serum, it did not prevent infection. The emergence of viremia following DENV3 challenge was delayed by 3-6 days in the rAAV-treated group, and replicating virus contained the envelope mutation K64R. This neutralization-resistant variant was also confirmed by virus outgrowth experiments in vitro. By delivering P3D05 with unmutated Fc sequences, we further demonstrated that DENV3 also evaded wild-type nAb prophylaxis, and serum viral loads appeared to be higher in the presence of low levels of unmutated P3D05-rhIgG1. Our study shows that a vectored approach for long-term delivery of nAbs with the LALA mutations is promising, but prophylaxis using a single nAb is likely insufficient at preventing DENV infection and replication.

Concurrent mosquito-borne triple infections of dengue, malaria and chikungunya: A case report.

Prevalence of IgG antibodies for the West Nile virus in human population in Tripoli, Libya.

West Nile fever (WNF) is a mosquito-borne viral infection, circulated in natural cycles between birds and mosquitoes, particularly Culex species. It is transmitted to humans through mosquito bites, and causes a variety of clinical outcomes, ranging from asymptomatic or mild febrile illness to severe men in go encepha- litis with some fatalities observed in older or immunocompromised patients. West Nile virus (WNV) transmission is considerably influenced by environmental conditions; and abundance of avifauna and mosquitoes.There are very few reports on WNV exposure in individuals from Tripoli City in Libya. The main objective was to provide basic epidemiological information about the WNV seroprevalence in the human population of Tripoli.

DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection.

Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.

The Range of Neurological Complications in Chikungunya Fever.

Chikungunya fever is a globally spreading mosquito-borne disease that shows an unexpected neurovirulence. Even though the neurological complications have been a major cause of intensive care unit admission and death, to date, there is no systematic analysis of their spectrum available.

Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak.

Predicting the timing and locations of future mosquito-borne disease outbreaks has the potential to improve the targeting of mosquito control and disease prevention efforts. Here, we present and evaluate prospective forecasts made prior to and during the 2016 West Nile virus (WNV) season in South Dakota, a hotspot for human WNV transmission in the United States.

How do we manage blood donors and recipients after a positive Zika screening result?

Zika virus (ZIKV) is a mosquito-borne flavivirus that is the focus of an ongoing pandemic. ZIKV is notable for its severe neurologic sequelae in babies born to infected mothers. High rates of subclinical infection, as evidenced by the finding of ZIKV RNA in asymptomatic donors, raise concerns of risk to the blood supply. To date, a total of four suspected cases of transfusion-transmitted ZIKV have been reported (all in Brazil), none of which were associated with clinical infection in the transfusion recipients. In 2016, the US Food and Drug Administration issued a guidance mandating national blood donor screening for ZIKV in the United States. Five days after implementation of donor screening at our facility, we encountered a ZIKV-positive donor. We provide a practical approach to donor, recipient, and blood product management in the setting of a positive donor ZIKV result. Such has been informed by the challenges we faced in the workup of a ZIKV-reactive donation and recipient lookback.

Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands.

Malaria is caused by mosquito-borne Plasmodium spp. parasites that must infect and survive within mosquito salivary glands (SGs) prior to host transmission. Recent advances in transcriptomics and the complete genome sequencing of mosquito vectors have increased our knowledge of the SG genes and proteins involved in pathogen infection and transmission. Membrane solute carriers are key proteins involved in drug transport and are useful in the development of new interventions for transmission blocking. Herein, we applied transcriptomics analysis to compare SGs mRNA levels in Anopheles stephensi fed on non-infected and P. berghei-infected mice. The A. stephensi solute carriers prestinA and NDAE1 were up-regulated in response to infection. These molecules are predicted to interact with each other, and are reportedly involved in the maintenance of cell homeostasis. To further evaluate their functions in mosquito survival and parasite infection, these genes were knocked down by RNA interference. Knockdown of prestinA and NDAE1 resulted in reduction of the number of sporozoites in mosquito SGs. Moreover, NDAE1 knockdown strongly impacted mosquito survival, resulting in the death of half of the treated mosquitoes. Overall, our findings indicate the importance of prestinA and NDAE1 in interactions between mosquito SGs and Plasmodium, and suggest the need for further research.

To coil or not to coil: application practices, perception and efficacy of mosquito coils in a malaria-endemic community in Ghana.

Although evidence of mosquito coils' impact on disease epidemiology is limited, they are popularized as mosquito-borne disease prevention devices. Their usage affects the environment, human and mosquito health. This study investigated the perception, usage pattern and efficacy of coils in a predominantly poor malaria-endemic Ghanaian peri-urban area. Information on protection methods, perception and usage pattern was garnered using questionnaires. The efficacy of commonly used coils in the area was then assessed on the malaria vector, Anopheles gambiae, in a glass chamber. Sole or co-application of mosquito control methods and risky usage practices were reported. Coils were deemed harmful to humans and mosquitoes, and their perceived effectiveness varied, with several factors influencing their purchase. High d-allethrin concentration coils induced quicker mosquito knockdown; however, mortality was less than 85%. The coil usage pattern compromises users' health and can enhance mosquito tolerance to d-allethrin. The coils were ineffective against the vector, outlining a dichotomy between the users' perception of efficacy and the observed efficacy. Hence, the usage of other safer and more effective vector control methods should be encouraged to protect households.