A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Animal Diseases - Top 30 Publications

Fixational Saccades and Their Relation to Fixation Instability in Strabismic Monkeys.

To evaluate the contribution of fixational saccades toward fixation instability in strabismic monkeys.

Harmful Algal Bloom-Associated Illnesses in Humans and Dogs Identified Through a Pilot Surveillance System - New York, 2015.

Cyanobacteria, also known as blue-green algae, are photosynthetic, aquatic organisms found in fresh, brackish, and marine water around the world (1). Rapid proliferation and accumulation of potentially toxin-producing cyanobacteria characterize one type of harmful algal bloom (HAB). HABs have the potential to cause illness in humans and animals (2,3); however, the epidemiology of these illnesses has not been well characterized. Statewide in 2015, a total of 139 HABs were identified in New York, 97 (70%) of which were confirmed through laboratory analysis; 77 independent beach closures were ordered at 37 beaches on 20 different bodies of water. To better characterize HAB-associated illnesses, during June-September 2015, the New York State Department of Health (NYSDOH) implemented a pilot surveillance system in 16 New York counties. Activities included the collection of data from environmental HAB reports, illness reports, poison control centers, and syndromic surveillance, and increased outreach to the public, health care providers, and veterinarians. During June-September, 51 HAB-associated illnesses were reported, including 35 that met the CDC case definitions*; 32 of the cases occurred in humans and three in dogs. In previous years, New York never had more than 10 HAB-associated illnesses reported statewide. The pilot surveillance results from 16 counties during a 4-month period suggest that HAB-associated illnesses might be more common than previously reported.

Neutralizing antibodies for orthobunyaviruses in Pantanal, Brazil.

The Pantanal is a hotspot for arbovirus studies in South America. Various medically important flaviviruses and alphaviruses have been reported in domestic and wild animals in the region. To expand the knowledge of local arbovirus circulation, a serosurvey for 14 Brazilian orthobunyaviruses was conducted with equines, sheep and free-ranging caimans. Sera were tested for specific viral antibodies using plaque-reduction neutralization test (PRNT). Monotypic reactions were detected for Maguari, Xingu, Apeu, Guaroa, Murutucu, Oriboca, Oropouche and Nepuyo viruses. Despite the low titers for most of the orthobunyaviruses tested, the detection of monotypic reactions for eight orthobunyaviruses suggests the Pantanal as a region of great orthobunyavirus diversity. The present data, in conjunction with previous studies that detected a high diversity of other arboviruses, ratify the Pantanal as an important natural reservoir for sylvatic and medically important arboviruses in Brazil.

A lethal disease model for New World hantaviruses using immunosuppressed Syrian hamsters.

Hantavirus, the hemorrhagic causative agent of two clinical diseases, is found worldwide with variation in severity, incidence and mortality. The most lethal hantaviruses are found on the American continent where the most prevalent viruses like Andes virus and Sin Nombre virus are known to cause hantavirus pulmonary syndrome. New World hantavirus infection of immunocompetent hamsters results in an asymptomatic infection except for Andes virus and Maporal virus; the only hantaviruses causing a lethal disease in immunocompetent Syrian hamsters mimicking hantavirus pulmonary syndrome in humans.

Equine infectious anaemia in Europe: an ongoing threat to the UK.

Helen Roberts of Defra's International Disease Monitoring team sets out the situation regarding equine infectious anaemia in Europe, the threat to the UK and the expectations of disease control measures in light of an outbreak being detected.

Pegivirus avoids immune recognition but does not attenuate acute-phase disease in a macaque model of HIV infection.

Human pegivirus (HPgV) protects HIV+ people from HIV-associated disease, but the mechanism of this protective effect remains poorly understood. We sequentially infected cynomolgus macaques with simian pegivirus (SPgV) and simian immunodeficiency virus (SIV) to model HIV+HPgV co-infection. SPgV had no effect on acute-phase SIV pathogenesis-as measured by SIV viral load, CD4+ T cell destruction, immune activation, or adaptive immune responses-suggesting that HPgV's protective effect is exerted primarily during the chronic phase of HIV infection. We also examined the immune response to SPgV in unprecedented detail, and found that this virus elicits virtually no activation of the immune system despite persistently high titers in the blood over long periods of time. Overall, this study expands our understanding of the pegiviruses-an understudied group of viruses with a high prevalence in the global human population-and suggests that the protective effect observed in HIV+HPgV co-infected people occurs primarily during the chronic phase of HIV infection.

Abomasal dysfunction and cellular and mucin changes during infection of sheep with larval or adult Teladorsagia circumcincta.

This is the first integrated study of the effects on gastric secretion, inflammation and fundic mucins after infection with L3 T. circumcincta and in the very early period following transplantation of adult worms. At 3 months-of-age, 20 Coopworth lambs were infected intraruminally with 35,000 L3; infected animals were killed on Days 5, 10, 15, 20 and 30 post-infection and 6 controls on either Day 0 or 30 post-infection. Another 15 Romney cross lambs received 10,000 adult worms at 4-5 months-of-age though surgically-implanted abomasal cannulae and were killed after 6, 12, 24 and 72 hours; uninfected controls were also killed at 72 hours. Blood was collected at regular intervals from all animals for measurement of serum gastrin and pepsinogen and abomasal fluid for pH measurement from cannulated sheep. Tissues collected at necropsy were fixed in Bouin's fluid for light microscopy, immunocytochemistry and mucin staining and in Karnovsky's fluid for electron microscopy. Nodules around glands containing developing larvae were seen on Day 5 p.i., but generalised effects on secretion occurred only after parasite emergence and within hours after transplantation of adult worms. After L3 infection, there were maximum worm burdens on Days 10-15 post-infection, together with peak tissue eosinophilia, inhibition of gastric acid secretion, hypergastrinaemia, hyperpepsinogenaemia, loss of parietal cells, enlarged gastric pits containing less mucin and increased numbers of mucous neck cells. After adult transplantation, serum pepsinogen was significantly increased after 9 hours and serum gastrin after 18 hours. Parallel changes in host tissues and the numbers of parasites in the abomasal lumen suggest that luminal parasites, but not those in the tissues, are key drivers of the pathophysiology and inflammatory response in animals exposed to parasites for the first time. These results are consistent with initiation of the host response by parasite chemicals diffusing across the surface epithelium, possibly aided by components of ES products which increased permeability. Parietal cells appear to be a key target, resulting in secondary increases in serum gastrin, pit elongation, loss of surface mucins and inhibition of chief cell maturation. Inflammation occurs in parallel, and could either cause the pathology or exacerbate the direct effects of ES products.

Blood parameters as biomarkers in a Salmonella spp. disease model of weaning piglets.

The weaning pig is used as an experimental model to assess the impact of diet on intestinal health. Blood parameters (BP) are considered a useful tool in humans, but there is very scarce information of such indicators in the weaning pig. The objective of the present study is to evaluate the use of different BP as indicators in an experimental model of salmonellosis.

Elevation in and persistence of multiple urinary biomarkers indicative of oxidative DNA stress and inflammation: Toxicological implications of maleic acid consumption using a rat model.

Maleic acid (MA), an intermediate reagent used in many industrial products, instigated public health concerns in Taiwan when it was used to adulterate an array of starch-based delicacies to improve texture and storage time. Established studies reported that exposure to high concentrations of MA induce renal injury; little is known whether oxidative stress is induced at a relative low dose. This study aims to investigate the effect of oral single dose exposure of MA on the status of oxidative stress and inflammation. Single dose of MA at 0, 6 and 60 mg/kg (control, low- and high-dose groups, respectively) were orally administered to adult male and female rats. Urine samples were collected and analyzed to measure 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-IsoPGF2α), 8-nitroguanine (8-NO2Gua) and N-acetyl-S-(tetrahydro-5-hydroxy-2-pentyl-3-furanyl)-L-cysteine (HNE-MA) using LC-MS/MS. Results revealed that oral consumption of MA induced oxidative DNA damage and lipid peroxidation, as demonstrated by the statistically significant increases in urinary levels of 8-NO2Gua, 8-OHdG, and 8-isoPGF2α, in high-dosed male rats within 12 h of oral gavage (p < 0.05). Additionally, increases in concentration of these biomarkers persist for days after consumption; male rats appear to be more sensitive to oxidative burden compared to their counterparts. The aforementioned findings could help elucidate the mechanisms through which nephrotoxicity occur.

Identification of Glyceraldehyde-3-Phosphate and Alcohol Dehydrogenases as Autoantigens in Doberman Hepatitis.

An autoimmune background is suspected for Doberman hepatitis (DH). It is based on the finding of mononuclear cell infiltrates in the liver, strong female bias, association to the homozygous risk factor dog leucocyte antigen (DLA) allele DRB1*00601 and aberrant major histocompatibility complex (MHC) class II expression on hepatocytes that correlates with the degree of inflammation in the liver. The aim of this study was to search for autoantibodies against liver-related antigens associated with DH. Twenty-five Dobermans with subclinical DH (SDH), 13 that clinically manifest DH (CDH) and 17 healthy controls were studied. Immunoblotting analysis detected specific antibodies in the DH sera. By mass spectrometry the targets were identified as liver-related enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and alcohol dehydrogenase (ADH). Using ELISA, anti-GAPDH IgG was detected in 36% (9/25) of SDH dogs and 69.2% (9/13) of the CDH dogs compared to healthy controls (0/17) (P < 0.0005). Anti-ADH IgG was detected in 72% (18/25) of SDH dogs and 76.9% (10/13) of CDH dogs and only in one (1/17) control (P < 0.0005). The finding of novel autoantigens, GAPDH and ADH strengthen the hypothesis that DH is an autoimmune disease of the liver. These findings suggest that DH could be diagnosed by screening for autoantibodies against the defined antigens.

Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury.

Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor β (TGFβ) pathway, osteopontin encoded by the SPP1 gene and latent TGFβ binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFβ and TGFβ-associated pathways. We identified that increased TGFβ resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFβ and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.

Right dorsal colon ultrasonography in normal adult ponies and miniature horses.

The aim of this study was to determine the normal location, wall thickness and motility of the right dorsal colon in adult ponies and miniature horses. The abdominal ultrasonography examination was performed in a study group consisting of 23 ponies and miniature horses and in a control group comprising ten Thoroughbred horses. The procedure was performed in unsedated standing animals. The location and the thickness of the right dorsal colonic wall was examined on the right side of the abdomen between the 10th and the 14th intercostal space. The contractility was recorded in the 12th intercostal space. A comparative analysis between the study group and control group was carried out using the Student's t-test. Pearson's linear correlation coefficient was used to calculate the correlation between the thickness of the colonic wall as well as the number of peristaltic movements and age, wither height and body mass of the animals. The right dorsal colon was identified in all the horses in the 12th intercostal space. In all the intercostal spaces the mean ± standard deviation (SD) wall thickness of the right dorsal colon was 0.27 ± 0.03 cm in the horses from the study group and 0.37 ± 0.03 cm in the control horses. The mean number of peristaltic contractions was 4.05 ± 1.07 per minute in the animals from the study group and 1.7 ± 0.46 contractions per minute in the control group. The values of the ultrasonographic wall thickness and peristaltic motility in small breed horses in the present study were different from the values obtained for large breed horses. The study also found that the right dorsal colon in small breed horses is physiologically located in the 12th intercostal space. This suggests that different reference values should be used in small horse breeds when performing an ultrasound examination.

The Health Impact of Rabies in Haiti and Recent Developments on the Path Toward Elimination, 2010-2015.

Haiti, a Caribbean country of 10.5 million people, is estimated to have the highest burden of canine-mediated human rabies deaths in the Western Hemisphere, and one of the highest rates of human rabies deaths in the world. Haiti is also the poorest country in the Western Hemisphere and has numerous economic and health priorities that compete for rabies-control resources. As a result, primary rabies-control actions, including canine vaccination programs, surveillance systems for human and animal rabies, and appropriate postbite treatment, have not been fully implemented at a national scale. After the 2010 earthquake that further hindered the development of public health program infrastructure and services, the U.S. Centers for Disease Control and Prevention worked with the Ministry of Public Health and Population and key health development partners (including the Pan-American Health Organization) to provide technical expertise and funding for general disease surveillance systems, laboratory capacity, and selected disease control programs; including rabies. In 2011, a cross-ministerial rabies consortium was convened with participation from multiple international rabies experts to develop a strategy for successful rabies control in Haiti. The consortium focused on seven pillars: 1) enhancement of laboratory diagnostic capacity, 2) development of comprehensive animal surveillance system, 3) development of comprehensive human rabies surveillance system, 4) educational outreach, 5) sustainable human rabies biologics supply, 6) achievement of sustained canine vaccination rates of ≥ 70%, and 7) finalization of a national rabies control strategy. From 2010 until 2015, Haiti has seen improvements in the program infrastructure for canine rabies control. The greatest improvements were seen in the area of animal rabies surveillance, in support of which an internationally recognized rabies laboratory was developed thereby leading to an 18-fold increase in the detection of rabid animals. Canine rabies vaccination practices also improved, from a 2010 level of approximately 12% to a 2015 dog population coverage level estimated to be 45%. Rabies vaccine coverage is still below the goal of 70%, however, the positive trend is encouraging. Gaps exist in the capacity to conduct national surveillance for human rabies cases and access to human rabies vaccine is lacking in many parts of the country. However, control has improved over the past 5 years as a result of the efforts of Haiti's health and agriculture sectors with assistance from multiple international organizations. Haiti is well situated to eliminate canine-mediated human rabies deaths in the near future and should serve as a great example to many developing countries struggling with similar barriers and limitations.

Fucoidans Stimulate Immune Reaction and Suppress Cancer Growth.

Fucoidans are gaining popularity as natural immunomodulators. The aim of this study was to compare the immunological activities or both purified samples and commercially available mixtures containing fucoidan.

Elevated Intraocular Pressure Induces Amyloid-β Deposition and Tauopathy in the Lateral Geniculate Nucleus in a Monkey Model of Glaucoma.

Recent evidence has suggested a potential association between Alzheimer's disease (AD) and glaucoma and found significant deposition of amyloid-β (Aβ) and Tau protein in the retinas of glaucoma patients. However, no coherent finding has emerged regarding the AD-like changes in the central visual system (CVS). Studies confirming the presence of Aβ and Tau neuropathology are warranted to identify the underlying mechanism that contributes to the visual impairment observed in glaucoma.

Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain.

Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis.

Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model.

This study evaluates the sustained analgesic effect of ketorolac-eluting thermosensitive biodegradable hydrogel in the plantar incisional pain model of the rat hind-paw. A ketorolac-embedded 2, 2'-Bis (2-oxazolin) (BOX) linking methoxy-poly(ethylene glycol) and poly(lactide-co-glycolide) (mPEG-PLGA) diblock copolymer (BOX copolymer) was synthesized as keto-hydrogel based on optimal sol-gel phase transition and in vitro drug release profile. The effect of keto-hydrogel on postoperative pain (POP) was assessed using the established plantar incisional pain model in hind-paw of rats and compared to that of ketorolac solution. Pain and sensory threshold, as well as pain scoring, were evaluated with behavioral tests by means of anesthesiometer and incapacitance apparatus, respectively. Pro-inflammatory cytokine levels (TNF-α, IL-6, VEGF, and IL-1β) around incisional wounds were measured by ELISA. Tissue histology was assessed using hematoxylin and eosin and Masson's trichrome staining. Ten mg/mL (25 wt%) keto-hydrogel showed a sol-gel transition at 26.4°C with a 10-day sustained drug release profile in vitro. Compared to ketorolac solution group, the concentration of ketorolac in tissue fluid was higher in the keto-hydrogel group during the first 18 h of application. Keto-hydrogel elevated pain and sensory threshold, increased weight-bearing capacity, and significantly reduced the levels of TNF-α, IL-6, and IL-1β while enhanced VEGF in tissue fluid. Histologic analysis reveals greater epithelialization and collagen deposition around wound treated with keto-hydrogel. In conclusion, our study suggests that keto-hydrogel is an ideal compound to treat POP with a secondary gain of improved incisional wound healing.

Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis.

MicroRNAs (miRNAs) are epigenetically involved in regulating gene expression. They may be of importance in the pathogenesis of inflammatory bowel disease (IBD). The aim of this study was to determine the role of miRNAs by their specific blocking in the CD4+CB45RBhi T-cell transfer model of chronic experimental colitis.

Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion.

In mammals, susceptibility to prion infection is primarily modulated by the host's cellular prion protein (PrP(C)) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrP(C) amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrP(C) allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrP(C) alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrP(C) substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility - permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted.

The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States.

Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.

Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in 'FUSDelta14' knockin mice.

Mutations in FUS are causative for amyotrophic lateral sclerosis with a dominant mode of inheritance. In trying to model FUS-amyotrophic lateral sclerosis (ALS) in mouse it is clear that FUS is dosage-sensitive and effects arise from overexpression per se in transgenic strains. Novel models are required that maintain physiological levels of FUS expression and that recapitulate the human disease-with progressive loss of motor neurons in heterozygous animals. Here, we describe a new humanized FUS-ALS mouse with a frameshift mutation, which fulfils both criteria: the FUS Delta14 mouse. Heterozygous animals express mutant humanized FUS protein at physiological levels and have adult onset progressive motor neuron loss and denervation of neuromuscular junctions. Additionally, we generated a novel antibody to the unique human frameshift peptide epitope, allowing specific identification of mutant FUS only. Using our new FUSDelta14 ALS mouse-antibody system we show that neurodegeneration occurs in the absence of FUS protein aggregation. FUS mislocalization increases as disease progresses, and mutant FUS accumulates at the rough endoplasmic reticulum. Further, transcriptomic analyses show progressive changes in ribosomal protein levels and mitochondrial function as early disease stages are initiated. Thus, our new physiological mouse model has provided novel insight into the early pathogenesis of FUS-ALS.

In vitro modeling of experimental succinic semialdehyde dehydrogenase deficiency (SSADHD) using brain-derived neural stem cells.

We explored the utility of neural stem cells (NSCs) as an in vitro model for evaluating preclinical therapeutics in succinic semialdehyde dehydrogenase-deficient (SSADHD) mice. NSCs were obtained from aldh5a1+/+ and aldh5a1-/- mice (aldh5a1 = aldehyde dehydrogenase 5a1 = SSADH). Multiple parameters were evaluated including: (1) production of GHB (γ-hydroxybutyrate), the biochemical hallmark of SSADHD; (2) rescue from cell death with the dual mTOR (mechanistic target of rapamycin) inhibitor, XL-765, an agent previously shown to rescue aldh5a1-/- mice from premature lethality; (3) mitochondrial number, total reactive oxygen species, and mitochondrial superoxide production, all previously documented as abnormal in aldh5a1-/- mice; (4) total ATP levels and ATP consumption; and (5) selected gene expression profiles associated with epilepsy, a prominent feature in both experimental and human SSADHD. Patterns of dysfunction were observed in all of these parameters and mirrored earlier findings in aldh5a1-/- mice. Patterns of dysregulated gene expression between hypothalamus and NSCs centered on ion channels, GABAergic receptors, and inflammation, suggesting novel pathomechanisms as well as a developmental ontogeny for gene expression potentially associated with the murine epileptic phenotype. The NSC model of SSADHD will be valuable in providing a first-tier screen for centrally-acting therapeutics and prioritizing therapeutic concepts of preclinical animal studies applicable to SSADHD.

Equine disease surveillance: quarterly summary.

of surveillance testing, April to June 2017International disease occurrence in the second quarter of 2017These are among matters discussed in the most recent quarterly equine disease surveillance report, prepared by Defra, the Animal Health Trust and the British Equine Veterinary Association.

Introduction of the MDM2 T309G Mutation in Primary Human Retinal Epithelial Cells Enhances Experimental Proliferative Vitreoretinopathy.

The murine double minute (MDM)2 is a critical negative regulator of the p53 tumor suppressor, and MDM2 SNP309G is associated with a higher risk of proliferative vitreoretinopathy (PVR); in addition, the MDM2 T309G created using clustered regularly interspaced short palindromic repeats (CRISPR)/associated endonuclease (Cas)9 enhances normal rabbit vitreous-induced expression of MDM2 and survival of primary human retinal pigment epithelial (hRPE) cells in vitro. The goal of this study was to determine whether this MDM2 T309G contributes to the development of experimental PVR.

Iron-Chelating Drugs Enhance Cone Photoreceptor Survival in a Mouse Model of Retinitis Pigmentosa.

Retinitis pigmentosa (RP) is a group of hereditary retinal degeneration in which mutations commonly result in the initial phase of rod cell death followed by gradual cone cell death. The mechanisms by which the mutations lead to photoreceptor cell death in RP have not been clearly elucidated. There is currently no effective treatment for RP. The purpose of this work was to explore iron chelation therapy for improving cone survival and function in the rd10 mouse model of RP.

MicroRNA expression analysis of feline and canine parvovirus infection in vivo (felis).

Feline panleukopenia is a common contagious disease with high morbidity and mortality. At present, feline parvovirus (FPV) and canine parvovirus (CPV) variants are the pathogens of feline panleukopenia. Many studies have shown that miRNAs are involved in virus-host interactions. Nevertheless, miRNA expression profiling of FPV (original virus) or CPV-2b (new virus) in cats has not been reported. To investigate these profiles, three 10-week-old cats were orally inoculated with 106 TCID50 of the viruses (FPV and CPV-2b), and the jejunums of one cat in each group were sectioned for miRNA sequencing at 5 days post-inoculation (dpi). This study is the first attempt to use miRNA analysis to understand the molecular basis of FPV and CPV infection in cats. The miRNA expression profiles of the jejunums of cats infected with FPV and CPV were obtained, and a subset of miRNAs was validated by real-time qPCR. The results show that a variety of metabolism-related pathways, cytokine- and pathogen-host interaction-related pathways, and pathology- and cellar structure-related pathways, as well as others, were affected. Specifically, the JAK-STAT signaling pathway, which is critical for cytokines and growth factors, was enriched. This description of the miRNAs involved in regulating FPV and CPV infection in vivo provides further insight into the mechanisms of viral infection and adaptation and might provide an alternative antiviral strategy for disease control and prevention.

Endemic chronic wasting disease causes mule deer population decline in Wyoming.

Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces shirasi) in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ). Mule deer were captured from 2010-2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old) deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ = 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression.

This study evaluated the chronic effects of fluoxetine, a commonly prescribed SSRI antidepressant, on the peripheral and central levels of inflammatory cytokines including IL-1β, IL-6, TNF-α and IL-17 over a 4-interval in a rat model of chronic mild stress (CMS) which resembles the human experience of depression. Twenty-four Sprague-Dawley rats were randomly assigned to CMS+vehicle (n = 9), CMS+fluoxetine (n = 9) and the control (n = 6) groups. Sucrose preference and forced swim tests were performed to assess behavioral change. Blood samples were collected on day 0, 60, 90 and 120 for measurement of cytokine levels in plasma. On day 120, the brain was harvested and central level of cytokines was tested using Luminex. Four months of fluoxetine treatment resulted in changes in the sucrose preference and immobility time measurements, commensurate with antidepressant effects. The CMS+vehicle group exhibited elevated plasma levels of IL-1β, IL-17, and TNF-α on day 60 or 120. Rats treated with fluoxetine demonstrated lower IL-1β in plasma and brain after 90 and 120-day treatment respectively (p<0.05). There was a trend of reduction of IL-6 and TNF-α concentration. This study revealed the potential therapeutic effects of fluoxetine by reducing central and peripheral levels of IL-1β in the alleviation of depressive symptoms.

Pig movements in France: Designing network models fitting the transmission route of pathogens.

Pathogen spread between farms results from interaction between the epidemiological characteristics of infectious agents, such as transmission route, and the contact structure between holdings. The objective of our study was to design network models of pig movements matching with epidemiological features of pathogens. Our first model represents the transmission of infectious diseases between farms only through the introduction of animals to holdings (Animal Introduction Model AIM), whereas the second one also accounts for pathogen spread through intermediate transit of trucks through farms even without any animal unloading (i.e. indirect transmission-Transit Model TM). To take the pyramidal organisation of pig production into consideration, these networks were studied at three different scales: the whole network and two subnetworks containing only breeding or production farms. The two models were applied to pig movement data recorded in France from June 2012 to December 2014. For each type of model, we calculated network descriptive statistics, looked for weakly/strongly connected components (WCCs/SCCs) and communities, and analysed temporal patterns. Whatever the model, the network exhibited scale-free and small-world topologies. Differences in centrality values between the two models showed that nucleus, multiplication and post-weaning farms played a key role in the spread of diseases transmitted exclusively by the introduction of infected animals, whereas farrowing and farrow-to-finish herds appeared more vulnerable to the introduction of infectious diseases through indirect contacts. The second network was less fragmented than the first one, a giant SCC being detected. The topology of network communities also varied with modelling assumptions: in the first approach, a huge geographically dispersed community was found, whereas the second model highlighted several small geographically clustered communities. These results underline the relevance of developing network models corresponding to pathogen features (e.g. their transmission route), and the need to target specific types of holdings/areas for surveillance depending on the epidemiological context.

CTLA-4(+)PD-1(-) Memory CD4(+) T Cells Critically Contribute to Viral Persistence in Antiretroviral Therapy-Suppressed, SIV-Infected Rhesus Macaques.

Antiretroviral therapy (ART) suppresses viral replication in HIV-infected individuals but does not eliminate the reservoir of latently infected cells. Recent work identified PD-1(+) follicular helper T (Tfh) cells as an important cellular compartment for viral persistence. Here, using ART-treated, SIV-infected rhesus macaques, we show that CTLA-4(+)PD-1(-) memory CD4(+) T cells, which share phenotypic markers with regulatory T cells, were enriched in SIV DNA in blood, lymph nodes (LN), spleen, and gut, and contained replication-competent and infectious virus. In contrast to PD-1(+) Tfh cells, SIV-enriched CTLA-4(+)PD-1(-) CD4(+) T cells were found outside the B cell follicle of the LN, predicted the size of the persistent viral reservoir during ART, and significantly increased their contribution to the SIV reservoir with prolonged ART-mediated viral suppression. We have shown that CTLA-4(+)PD-1(-) memory CD4(+) T cells are a previously unrecognized component of the SIV and HIV reservoir that should be therapeutically targeted for a functional HIV-1 cure.