PubTransformer

A site to transform Pubmed publications into these bibliographic reference formats: ADS, BibTeX, EndNote, ISI used by the Web of Knowledge, RIS, MEDLINE, Microsoft's Word 2007 XML.

Congenital, Hereditary, and Neonatal Diseases and Abnormalities - Top 30 Publications

Inflammation-induced fetal growth restriction in rats is associated with increased placental HIF-1α accumulation.

Hypoxia-inducible factor 1-alpha (HIF-1α) is the oxygen-sensitive subunit of the transcription factor HIF-1, and its expression is increased in placentas from pregnancies complicated by pre-eclampsia (PE). Fetal growth restriction (FGR) and PE often share a common pathophysiology; however, it is unknown whether increased placental HIF-1α occurs in FGR. We previously demonstrated that aberrant maternal inflammation in rats resulted in altered utero-placental perfusion and FGR, both of which were prevented by administration of the nitric oxide mimetic glyceryl trinitrate (GTN). Our aim here was to determine whether abnormal maternal inflammation causing FGR is linked to placental HIF-1α accumulation and whether GTN administration could prevent increases in placental HIF-1α.

Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions.

Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5'-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3'-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5'-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5'-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.

The lack of BTK does not impair monocytes and polymorphonuclear cells functions in X-linked agammaglobulinemia under treatment with intravenous immunoglobulin replacement.

The lack of BTK in X-linked agammaglobulinemia (XLA) patients does not affect monocytes and polymorphonuclear cells (PMN) phenotype and functions. In this study, we show that XLA patients had an increased frequency of the intermediate monocytes subset and that BTK-deficient monocytes and PMN had a normal expression of receptors involved in the activation and cellular responses. We demonstrate that BTK is not required for migration, phagocytosis and the production of reactive oxygen species (ROS) following engagement of FC gamma receptors (FcγR). XLA monocytes and PMN showed an efficient calcium (Ca2+)-independent activation of oxidative burst, suggesting that oxidative burst is less dependent by Ca2+ mobilization. The phagocytosis was functional and it remained unaltered also after Ca2+ chelation, confirming the independence of phagocytosis on Ca2+ mobilization. Intravenous immunoglobulin (IVIg) infusion exerted an anti-inflammatory effect by reducing the frequency of pro-inflammatory monocytes. In monocytes, the IVIg reduce the oxidative burst and phagocytosis even if these functions remained efficient.

Systematic review and meta-analysis shows a specific micronutrient profile in people with Down Syndrome: Lower blood calcium, selenium and zinc, higher red blood cell copper and zinc, and higher salivary calcium and sodium.

Different metabolic profiles as well as comorbidities are common in people with Down Syndrome (DS). Therefore it is relevant to know whether micronutrient levels in people with DS are also different. This systematic review was designed to review the literature on micronutrient levels in people with DS compared to age and sex-matched controls without DS. We identified sixty nine studies from January 1967 to April 2016 through main electronic medical databases PubMed, Scopus, and Web of knowledge. We carried out meta-analysis of the data on four essential trace elements (Cu, Fe, Se, and Zn), six minerals (Ca, Cl, K, Mg, Na, and P), and five vitamins (vitamin A, B9, B12, D, and E). People with DS showed lower blood levels of Ca (standard mean difference (SMD) = -0.63; 95% confidence interval (CI): -1.16 to -0.09), Se (SMD = -0.99; 95% CI: -1.55 to -0.43), and Zn (SMD = -1.30; 95% CI: -1.75 to -0.84), while red cell levels of Zn (SMD = 1.88; 95% CI: 0.48 to 3.28) and Cu (SMD = 2.77; 95% CI: 1.96 to 3.57) were higher. They had also higher salivary levels of Ca (SMD = 0.85; 95% CI: 0.38 to 1.33) and Na (SMD = 1.04; 95% CI: 0.39 to 1.69). Our findings that micronutrient levels are different in people with DS raise the question whether these differences are related to the different metabolic profiles, the common comorbidities or merely reflect DS.

Patient complexity and genotype-phenotype correlations in biliary atresia: a cross-sectional analysis.

Biliary Atresia (BA) is rare and genetically complex, and the pathogenesis is elusive. The disease course is variable and can represent heterogeneity, which hinders effective disease management. Deciphering the BA phenotypic variance is a priority in clinics and can be achieved by the integrative analysis of genotype and phenotype. We aim to explore the BA phenotypic features and to delineate the source of its variance.

Characterization of hydroxypropyl-beta-cyclodextrins used in the treatment of Niemann-Pick Disease type C1.

2-Hydroxypropyl-beta-cyclodextrin (HPβCD) has gained recent attention as a potential therapeutic intervention in the treatment of the rare autosomal-recessive, neurodegenerative lysosomal storage disorder Niemann-Pick Disease Type C1 (NPC1). Notably, HPβCD formulations are not comprised of a single molecular species, but instead are complex mixtures of species with differing degrees of hydroxypropylation of the cyclodextrin ring. The degree of substitution is a critical aspect of the complex mixture as it influences binding to other molecules and thus could potentially modulate biological effects. VTS-270 (Kleptose HPB) and Trappsol® Cyclo™ are HPβCD products under investigation as novel treatments for NPC1. The purpose of the present work is to compare these two different products; analyses were based on ion distribution and abundance profiles using mass spectrometry methodology as a means for assessing key molecular distinctions between products. The method incorporated electrospray ionization and analysis with a linear low-field ion mobility quadrupole time-of-flight instrument. We observed that the number of hydroxypropyl groups (the degrees of substitution) are substantially different between the two products and greater in Trappsol Cyclo than in VTS-270. The principal ions of both samples are ammonium adducts. Isotope clusters for each of the major ions show doubly charged homodimers of the ammonium adducts. In addition, both products show doubly charged homodimers from adduction of both a proton and ammonium. Doubly charged heterodimers are also present, but are more intense in Trappsol Cyclo than in VTS-270. Based on the analytical differences observed between VTS-270 and Trappsol Cyclo with respect to the degree of substitution, the composition and fingerprint of the complex mixture, and the impurity profiles, these products cannot be considered to be the same; the potential biological and clinical implications of these differences are not presently known.

Active transforming growth factor-β2 in the aqueous humor of posterior polymorphous corneal dystrophy patients.

Posterior polymorphous corneal dystrophy (PPCD) is characterized by abnormal proliferation of corneal endothelial cells. It was shown that TGF-β2 present in aqueous humor (AH) could help maintaining the corneal endothelium in a G1-phase-arrest state. We wanted to determine whether the levels of this protein are changed in AH of PPCD patients.

Protein-losing Enteropathy Caused by Spontaneous Reduction of Intussusception with Meckel's Diverticulum.

Protein-losing enteropathy (PLE) is a relatively rare condition. In this article, we report the case of a 6-year-old boy diagnosed with PLE who developed intussusception, in whom at operation Meckel's diverticulum was identified in his intestine. Spontaneous reduction of intussusception is thought to relate to the mechanism of PLE.

Acute ethanol exposure during late mouse neurodevelopment results in long-term deficits in memory retrieval, but not in social responsiveness.

Prenatal alcohol exposure can result in neurological changes in affected individuals and may result in the emergence of a broad spectrum of neurobehavioral abnormalities termed fetal alcohol spectrum disorders (FASD). The effects of ethanol exposure during development are both time and dose dependent. Although many animal models of FASD use more chronic ethanol exposure, acute developmental alcohol exposure may also cause long-lasting neuronal changes. Our research employed behavioral measures to assess the effects of a single early postnatal ethanol intoxication event in mice.

Hereditary Kidney Cancer Syndromes and Surgical Management of the Small Renal Mass.

The management of patients with hereditary kidney cancers presents unique challenges to clinicians. In addition to an earlier age of onset compared with patients with sporadic kidney cancer, those with hereditary kidney cancer syndromes often present with bilateral and/or multifocal renal tumors and are at risk for multiple de novo lesions. This population of patients may also present with extrarenal manifestations, which adds an additional layer of complexity. Physicians who manage these patients should be familiar with the underlying clinical characteristics of each hereditary kidney cancer syndrome and the suggested surgical approaches and recommendations of genetic testing for at-risk individuals.

The Molecular Revolution in Cutaneous Biology: Era of Molecular Diagnostics for Inherited Skin Diseases.

The discovery of pathogenic mutations in inherited skin diseases represents one of the major landmarks of late 20th century molecular genetics. Mutation data can provide accurate diagnoses, improve genetic counseling, help define disease mechanisms, establish disease models, and provide a basis for translational research and testing of novel therapeutics. The process of detecting disease mutations, however, has not always been straightforward. Traditional approaches using genetic linkage or candidate gene analysis have often been limited, costly, and slow to yield new insights, but the advent of next-generation sequencing (NGS) technologies has altered the landscape of current gene discovery and mutation detection approaches.

The effect of foetal growth restriction on the development of migraine and tension-type headache in adulthood. The HUNT Study.

There is little knowledge about how factors early in life affect the development of migraine and tension-type headache. We aimed to examine whether growth restriction in utero is associated with development of migraine and frequent tension-type headache in adults.

Cilia and sensory signaling: The journey from "animalcules" to human disease.

Nearly all cell types in mammals contain cilia, small rod-like or more elaborate structures that extend from the cell surface. Cilia house signaling proteins that allow the cell to sample their environment and respond appropriately. Mutations in ciliary genes alter the functions of a broad range of cell and tissue types, including sensory and central neurons, and underlie a collection of heterogeneous human disorders called ciliopathies. Here, I highlight the critical contributions of nearly three centuries of research in diverse organisms to our current knowledge of cilia function in sensory signaling and human disease.

Suspected Fetal Growth Restriction at 37 Weeks: A Comparison of Doppler and Placental Pathology.

Objective. Our objective was determining if abnormal Doppler evaluation had a higher prevalence of placental pathology compared to normal Doppler in suspected fetal growth restriction (FGR) of cases delivered at 37 weeks. Study Design. This retrospective cohort study of suspected FGR singletons with antenatal Doppler evaluation delivered at 37 weeks had a primary outcome of the prevalence of placental pathology related to FGR. Significance was defined as p ≤ 0.05. Results. Of 100 pregnancies 46 and 54 were in the abnormal and normal Doppler cohorts, respectively. Placental pathology was more prevalent with any abnormal Doppler, 84.8% versus 55.6%, odds ratio (OR) 4.46, 95% confidence interval (CI): 1.55, 13.22, and p = 0.002. Abnormal middle cerebral artery (MCA) Doppler had a higher prevalence: 96.2% versus 54.8%, OR 20.7, 95% CI: 2.54, 447.1, and p < 0.001. Conclusion. Abnormal Doppler was associated with more placental pathology in comparison to normal Doppler in fetuses with suspected FGR. Abnormal MCA Doppler had the strongest association.

Cell Therapy Trials in Congenital Heart Disease.

Dramatic evolution in medical and catheter interventions and complex surgeries to treat children with congenital heart disease (CHD) has led to a growing number of patients with a multitude of long-term complications associated with morbidity and mortality. Heart failure in patients with hypoplastic left heart syndrome predicated by functional single ventricle lesions is associated with an increase in CHD prevalence and remains a significant challenge. Pathophysiological mechanisms contributing to the progression of CHD, including single ventricle lesions and dilated cardiomyopathy, and adult heart disease may inevitably differ. Although therapeutic options for advanced cardiac failure are restricted to heart transplantation or mechanical circulatory support, there is a strong impetus to develop novel therapeutic strategies. As lower vertebrates, such as the newt and zebrafish, have a remarkable ability to replace lost cardiac tissue, this intrinsic self-repair machinery at the early postnatal stage in mice was confirmed by partial ventricular resection. Although the underlying mechanistic insights might differ among the species, mammalian heart regeneration occurs even in humans, with the highest degree occurring in early childhood and gradually declining with age in adulthood, suggesting the advantage of stem cell therapy to ameliorate ventricular dysfunction in patients with CHD. Although effective clinical translation by a variety of stem cells in adult heart disease remains inconclusive with respect to the improvement of cardiac function, case reports and clinical trials based on stem cell therapies in patients with CHD may be invaluable for the next stage of therapeutic development. Dissecting the differential mechanisms underlying progressive ventricular dysfunction in children and adults may lead us to identify a novel regenerative therapy. Future regenerative technologies to treat patients with CHD are exciting prospects for heart regeneration in general practice.

Diagnosis of biofilm infections in cystic fibrosis patients.

Chronic Pseudomonas aeruginosa biofilm lung infection in cystic fibrosis patients is the best described biofilm infection in medicine. The initial focus can be the paranasal sinuses and then follows repeated colonization and infection of the lungs by aspiration. The matrix of the biofilms is dominated by alginate and the pathogenesis of tissue damage is immune complex-mediated chronic inflammation dominated by polymorphonuclear leukocytes and their products (DNA, oxygen radicals and proteases). The P. aeruginosa biofilm infection can be diagnosed by microscopy of lung tissue, sputum and mucus from the paranasal sinuses, where aggregates of the bacteria are found surrounded by the abundant alginate matrix. Specific PNA-FISH probes can be used to identify P. aeruginosa and other pathogens in situ in the biofilms. Growth of mucoid colonies from the locations mentioned above is also diagnostic for biofilm infection. Rise of specific anti-P. aeruginosa antibodies is likewise diagnostic, IgG in serum in case of lung infection, sIgA in saliva or nasal secretions in case of paranasal sinus infection. Similar approaches have been developed to diagnose chronic biofilm infections in cystic fibrosis caused by other pathogens e.g., Stenotrophomonas, Burkholderia multivorans, Achromobacter xylosoxidans and Mycobacterium abscessus complex.

Biofilms and host response - helpful or harmful.

Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non-obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm-related infections, both foreign body-related and non-foreign body-related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.

Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response.

In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.

C1q ablation exacerbates amyloid deposition: A study in a transgenic mouse model of ATTRV30M amyloid neuropathy.

ATTRV30M amyloid neuropathy is a lethal autosomal dominant sensorimotor and autonomic neuropathy, caused by deposition of amyloid fibrils composed of aberrant transthyretin (TTR). Ages of onset and penetrance exhibit great variability and genetic factors have been implicated. Complement activation co-localizes with amyloid deposits in amyloidotic neuropathy and is possibly involved in the kinetics of amyloidogenesis. A candidate gene approach has recently identified C1q polymorphisms to correlate with disease onset in a Cypriot cohort of patients with ATTRV30M amyloid neuropathy. In the current study we use a double transgenic mouse model of ATTRV30M amyloid neuropathy in which C1q is ablated to elucidate further a possible modifier role for C1q. Amyloid deposition is found to be increased by 60% in the absence of C1q. Significant up regulation is also recorded in apoptotic and cellular stress markers reflecting extracellular toxicity of pre-fibrillar and fibrillar TTR. Our data further indicate that in the absence of C1q there is marked reduction of macrophages in association with amyloid deposits and thus less effective phagocytosis of TTR.

A model of Periventricular Leukomalacia (PVL) in neonate mice with histopathological and neurodevelopmental outcomes mimicking human PVL in neonates.

Periventricular leukomalacia (PVL), a brain injury affecting premature infants is commonly associated with cerebral palsy. PVL results from hypoxia-ischemia (HI) with or without infection and is characterized by white matter necrotic lesions, hypomyelination, microglial activation, astrogliosis, and neuronal death. It is important to study a PVL mouse model that mimics human PVL in symptomatology, anatomic and molecular basis. In our neonate mice model, bilateral carotid arteries were temporary ligated at P5 followed by hypoxic exposure (FiO2 of 8% for 20 min.). At P5 in mice, the white matter is more vulnerable to HI injury than the grey matter. In our PVL model, mice suffer from significant hind limb paresis, incoordination and feeding difficulties. Histologically they present with ventriculomegally, white matter loss, microglial activation and neuronal apoptosis. HI injury increases proinflammtory cytokines, activates NF-kB, activates microglia and causes nitrative stress. All these inflammatory mediators lead to oligodendroglial injury and white matter loss. Neurobehavioral analysis in the PVL mice model at P60 showed that the HI group had a significant decrease in hind limb strength, worsening rotarod testing and worsening performance in the open field test. This new PVL model has great advantages far beyond just mimicking human PVL in clinical features and histopathology. Long term survival, the development of cerebral palsy and the ability of using this model in transgenic animals will increase our understanding of the mechanistic pathways underlying PVL and defining specific targets for the development of suitable therapeutics.

High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD), one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR) in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111) as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

No age effect in the prevalence and clinical significance of ultra-high risk symptoms and criteria for psychosis in 22q11 deletion syndrome: Confirmation of the genetically driven risk for psychosis?

The 22q11.2 deletion syndrome (22q11DS) is one of the highest known risk factors for schizophrenia. Thus, the detection of 22q11DS patients at particularly high risk of psychosis is important, yet studies on the clinical significance of the widely used ultra-high risk (UHR) criteria in 22q11DS are inconclusive. Since age was reported to moderate clinical significance of UHR symptoms in community samples, we explored whether age at presentation of UHR symptoms and criteria may explain part of this heterogeneity.

Arrhythmogenic Right Ventricular Cardiomyopathy.

Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: A pilot randomized study of high-dose vitamin D3 administration.

Cystic fibrosis (CF) is a chronic catabolic disease often requiring hospitalization for acute episodes of worsening pulmonary exacerbations. Limited data suggest that vitamin D may have beneficial clinical effects, but the impact of vitamin D on systemic metabolism in this setting is unknown.

A novel mutation in homeobox DNA binding domain of HOXC13 gene underlies pure hair and nail ectodermal dysplasia (ECTD9) in a Pakistani family.

Pure hair and nail ectodermal dysplasia (PHNED) is a congenital disorder of hair abnormalities and nail dysplasia. Both autosomal recessive and dominant inheritance fashion of PHNED occurs. In literature, to date, five different forms of PHNED have been reported at molecular level, having three genes known and two loci with no gene yet.

High Mitochondrial DNA Copy Number Is a Protective Factor From Vision Loss in Heteroplasmic Leber's Hereditary Optic Neuropathy (LHON).

Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease that typically causes bilateral blindness in young men. It is characterized by as yet undisclosed genetic and environmental factors affecting the incomplete penetrance.

Evidence of neurofibromatosis type 1 in a multi-morbid Inca child mummy: A paleoradiological investigation using computed tomography.

In this study, an Inca bundle was examined using computed tomography (CT). The primary aim was to determine the preservation status of bony and soft tissues, the sex, the age at the time of death, possible indicators for disease or even the cause of death, as well as the kind of mummification. A secondary aim was to obtain a brief overview of the wrapping in order to gain additional information on the cultural background.

Mutational spectrum of Chinese LGMD patients by targeted next-generation sequencing.

This study aimed to study the diagnostic value of targeted next-generation sequencing (NGS) in limb-girdle muscular dystrophies (LGMDs), and investigate the mutational spectrum of Chinese LGMD patients. We performed targeted NGS covering 420 genes in 180 patients who were consecutively suspected of LGMDs and underwent muscle biopsies from January 2013 to May 2015. The association between genotype and myopathological profiles was analyzed in the genetically confirmed LGMD patients. With targeted NGS, one or more rare variants were detected in 138 patients, of whom 113 had causative mutations, 10 sporadic patients had one pathogenic heterozygous mutation related to a recessive pattern of LGMDs, and 15 had variants of uncertain significance. No disease-causing mutation was found in the remaining 42 patients. Combined with the myopathological findings, we achieved a positive genetic diagnostic rate as 68.3% (123/180). Totally 105 patients were diagnosed as LGMDs with genetic basis. Among these 105 patients, the most common subtypes were LGMD2B in 52 (49.5%), LGMD2A in 26 (24.8%) and LGMD 2D in eight (7.6%), followed by LGMD1B in seven (6.7%), LGMD1E in four (3.8%), LGMD2I in three (2.9%), and LGMD2E, 2F, 2H, 2K, 2L in one patient (1.0%), respectively. Although some characteristic pathological changes may suggest certain LGMD subtypes, both heterogeneous findings in a certain subtype and overlapping presentations among different subtypes were not uncommon. The application of NGS, together with thorough clinical and myopathological evaluation, can substantially improve the molecular diagnostic rate in LGMDs. Confirming the genetic diagnosis in LGMD patients can help improve our understanding of their myopathological changes.

Jejunojejunal intussusception after Roux-en-Y gastric bypass in a situs inversus totalis patient: A case report.

Situs inversus totalis (SIT) is an uncommon clinical manifestation. Patients with SIT typically have malformation in the thorax and abdomen. The incidence of SIT ranges from 1/10,000 to 1/20,000 (Al-Jumaily and Hoche. J Laparoendosc Adv Surg Tech A 2001;11:229). Jejunojejunal intussusception is a rare complication after Roux-en-Y gastric bypass. Intussusception in adult cases accounts for 5% of adult intestinal obstruction cases, while in children, the occurrence is high and the majority of them are idiopathic cases.

Renal dysplasia characterized by prominent cartilaginous metaplasia lesions in VACTERL association: A case report.

Renal dysplasia is the most important cause of end-stage renal disease in children. The histopathological characteristic of dysplasia is primitive tubules with fibromuscular disorganization. Renal dysplasia often includes metaplastic cartilage. Metaplastic cartilage in renal dysplasia has been explained as occurring secondary to vesicoureteral reflux (VUR). Additionally, renal dysplasia is observed in renal dysplasia-associated syndromes, which are combinations of multiple developmental malformations and include VACTERL association.